Automatic Detection and Segmentation of Lung Lesions using Deep Residual CNNs

被引:3
|
作者
Carvalho, Joao. B. S. [1 ]
Moreira, Jose-Maria [1 ]
Figueiredo, Mario A. T. [2 ]
Papanikolaou, Nickolas [3 ]
机构
[1] ULisboa, Inst Super Tecn, Champalimaud Fdn, Lisbon, Portugal
[2] ULisboa, Inst Super Tecn, Inst Telecomunicacoes, Lisbon, Portugal
[3] Champalimaud Fdn, Lisbon, Portugal
来源
2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE) | 2019年
关键词
Radiomics; lung cancer; segmentation; deep learning; convolutional neural network; residual connections; CT;
D O I
10.1109/BIBE.2019.00182
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Early detection of lung cancer has shown to significantly improve patient survival. Apart from lesion detection, tumour segmentation is critical for developing radiomics signatures. In this work, we propose a novel hybrid approach for lung lesion detection and segmentation on CT scans, where the segmentation task is assisted by prior detection of regions containing lesions. For the detection task, we introduce a 2.5D residual deep CNN working in a sliding-window fashion, whereas segmentation is tackled by a modified residual U-Net with a weighted-dice plus cross-entropy loss. Experimental results on the LIDC-IDRI dataset and on the lung tumour task dataset within the Medical Segmentation Decathlon show competitive detection performance of the proposed approach (0.902 recall) and superior segmentation capabilities (0.709 dice score). These results confirm the high potential of simpler models, with lower hardware requirements, thus of more general applicability.
引用
收藏
页码:977 / 983
页数:7
相关论文
共 50 条
  • [41] A segmentation method of lung areas by using snakes and automatic detection of abnormal shadow on the areas
    Itai, Yoshinori
    Kim, Hyoungseop
    Ishikawa, Seiji
    Yamamoto, Akiyoshi
    Nakamura, Katsumi
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2007, 3 (02): : 277 - 284
  • [42] Automatic classification and segmentation of multiclass jaw lesions in cone-beam CT using deep learning
    Liu, Wei
    Li, Xiang
    Liu, Chang
    Gao, Ge
    Xiong, Yutao
    Zhu, Tao
    Zeng, Wei
    Guo, Jixiang
    Tang, Wei
    DENTOMAXILLOFACIAL RADIOLOGY, 2024, 53 (07)
  • [43] Fully automatic detection and quantification of new white matter lesions using deep learning
    Gabay, Anthony S.
    Kinnunen, Kirsi M.
    Joules, Richard
    MULTIPLE SCLEROSIS JOURNAL, 2024, 30 (03) : 1197 - 1198
  • [44] Automatic Detection of Lung Ultrasound Artifacts using a Deep Neural Networks approach
    Vasquez, Carlos
    Romero, Stefano E.
    Zapana, Jose
    Paucar, Jesus
    Marini, Thomas J.
    Castaneda, Benjamin
    18TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2023, 12567
  • [45] Moving Object Detection With Deep CNNs
    Zhu, Haidi
    Yan, Xin
    Tang, Hongying
    Chang, Yuchao
    Li, Baoqing
    Yuan, Xiaobing
    IEEE ACCESS, 2020, 8 : 29729 - 29741
  • [46] Automatic segmentation of Psoriasis Lesions
    Ning, Yang
    Shi, Chenbo
    Wang, Li
    Shu, Chang
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY III, 2014, 9273
  • [47] Deep Residual Separable Convolutional Neural Network for lung tumor segmentation
    Dutande, Prasad
    Baid, Ujjwal
    Talbar, Sanjay
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 141
  • [48] Automatic segmentation of white matter and detection of active lesions in multiple sclerosis
    Afzal, H. M. R.
    Luo, S.
    Ramadan, S.
    Lechner-Scott, J.
    MULTIPLE SCLEROSIS JOURNAL, 2018, 24 : 180 - 180
  • [49] Editorial: Automatic methods for multiple sclerosis new lesions detection and segmentation
    Commowick, Olivier
    Combes, Benoit
    Cervenansky, Frederic
    Dojat, Michel
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [50] Automatic Detection and Segmentation of Liver Metastatic Lesions on Serial CT Examinations
    Ben Cohen, Avi
    Diamant, Idit
    Klang, Eyal
    Amitai, Michal
    Greenspan, Hayit
    MEDICAL IMAGING 2014: COMPUTER-AIDED DIAGNOSIS, 2014, 9035