Automatic Detection and Segmentation of Lung Lesions using Deep Residual CNNs

被引:3
|
作者
Carvalho, Joao. B. S. [1 ]
Moreira, Jose-Maria [1 ]
Figueiredo, Mario A. T. [2 ]
Papanikolaou, Nickolas [3 ]
机构
[1] ULisboa, Inst Super Tecn, Champalimaud Fdn, Lisbon, Portugal
[2] ULisboa, Inst Super Tecn, Inst Telecomunicacoes, Lisbon, Portugal
[3] Champalimaud Fdn, Lisbon, Portugal
来源
2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE) | 2019年
关键词
Radiomics; lung cancer; segmentation; deep learning; convolutional neural network; residual connections; CT;
D O I
10.1109/BIBE.2019.00182
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Early detection of lung cancer has shown to significantly improve patient survival. Apart from lesion detection, tumour segmentation is critical for developing radiomics signatures. In this work, we propose a novel hybrid approach for lung lesion detection and segmentation on CT scans, where the segmentation task is assisted by prior detection of regions containing lesions. For the detection task, we introduce a 2.5D residual deep CNN working in a sliding-window fashion, whereas segmentation is tackled by a modified residual U-Net with a weighted-dice plus cross-entropy loss. Experimental results on the LIDC-IDRI dataset and on the lung tumour task dataset within the Medical Segmentation Decathlon show competitive detection performance of the proposed approach (0.902 recall) and superior segmentation capabilities (0.709 dice score). These results confirm the high potential of simpler models, with lower hardware requirements, thus of more general applicability.
引用
收藏
页码:977 / 983
页数:7
相关论文
共 50 条
  • [31] Automatic Detection of Dental Lesions Based on Deep Learning
    Liu Feng
    Han Min
    Wang Jun
    Liu Chao
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2022, 49 (20):
  • [32] AUTOMATIC DETECTION OF EARLY ESOPHAGEAL CANCER WITH CNNS USING TRANSFER LEARNING
    van Riel, Sjors
    van der Sommen, Fons
    Zinger, Sveta
    Schoon, Erik J.
    de With, Peter H. N.
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1383 - 1387
  • [33] Food image segmentation using edge adaptive based deep-CNNs
    Burkapalli, Vishwanath C.
    Patil, Priyadarshini C.
    INTERNATIONAL JOURNAL OF INTELLIGENT UNMANNED SYSTEMS, 2020, 8 (04) : 243 - 252
  • [34] Deep Learning Algorithms in the Automatic Segmentation of Liver Lesions in Ultrasound Investigations
    Mamuleanu, Madalin
    Urhut, Cristiana Marinela
    Sandulescu, Larisa Daniela
    Kamal, Constantin
    Patrascu, Ana-Maria
    Ionescu, Alin Gabriel
    Serbanescu, Mircea-Sebastian
    Streba, Costin Teodor
    LIFE-BASEL, 2022, 12 (11):
  • [35] Automatic Detection and Segmentation of Mitochondria from SEM Images using Deep Neural Network
    Liu, Jing
    Li, Weifu
    Xiao, Chi
    Hong, Bei
    Xie, Qiwei
    Han, Hua
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 628 - 631
  • [36] Automatic detection of microaneurysms using a novel segmentation algorithm based on deep learning techniques
    Monisha Birlin, T.
    Divya, C.
    John Livingston, J.
    COMPUTATIONAL INTELLIGENCE, 2023, 39 (06) : 1039 - 1053
  • [37] AUTOMATIC DETECTION OF ANATOMICAL LANDMARKS ON GEOMETRIC MESH DATA USING DEEP SEMANTIC SEGMENTATION
    Liu, Shu
    He, Jia-Li
    Liao, Sheng-Hui
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [38] Multiple Sclerosis Lesions Segmentation Using Attention-Based CNNs in FLAIR Images
    Sadeghibakhi, Mehdi
    Pourreza, Hamidreza
    Mahyar, Hamidreza
    IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2022, 10
  • [39] Multiple Sclerosis Lesions Segmentation Using Attention-Based CNNs in FLAIR Images
    Sadeghibakhi, Mehdi
    Pourreza, Hamidreza
    Mahyar, Hamidreza
    IEEE Journal of Translational Engineering in Health and Medicine, 2022, 10
  • [40] Multiple Resolution Residual Network for Automatic Lung Tumor and Lymph Node Segmentation Using CT Images
    Um, H.
    Jiang, J.
    Rimner, A.
    Luo, L.
    Deasy, J.
    Thor, M.
    Veeraraghavan, H.
    MEDICAL PHYSICS, 2019, 46 (06) : E211 - E211