Automatic Detection and Segmentation of Lung Lesions using Deep Residual CNNs

被引:3
|
作者
Carvalho, Joao. B. S. [1 ]
Moreira, Jose-Maria [1 ]
Figueiredo, Mario A. T. [2 ]
Papanikolaou, Nickolas [3 ]
机构
[1] ULisboa, Inst Super Tecn, Champalimaud Fdn, Lisbon, Portugal
[2] ULisboa, Inst Super Tecn, Inst Telecomunicacoes, Lisbon, Portugal
[3] Champalimaud Fdn, Lisbon, Portugal
来源
2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE) | 2019年
关键词
Radiomics; lung cancer; segmentation; deep learning; convolutional neural network; residual connections; CT;
D O I
10.1109/BIBE.2019.00182
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Early detection of lung cancer has shown to significantly improve patient survival. Apart from lesion detection, tumour segmentation is critical for developing radiomics signatures. In this work, we propose a novel hybrid approach for lung lesion detection and segmentation on CT scans, where the segmentation task is assisted by prior detection of regions containing lesions. For the detection task, we introduce a 2.5D residual deep CNN working in a sliding-window fashion, whereas segmentation is tackled by a modified residual U-Net with a weighted-dice plus cross-entropy loss. Experimental results on the LIDC-IDRI dataset and on the lung tumour task dataset within the Medical Segmentation Decathlon show competitive detection performance of the proposed approach (0.902 recall) and superior segmentation capabilities (0.709 dice score). These results confirm the high potential of simpler models, with lower hardware requirements, thus of more general applicability.
引用
收藏
页码:977 / 983
页数:7
相关论文
共 50 条
  • [21] Automatic Fall Detection using Deep Neural Networks with Aggregated Residual Transformation
    Mekruksavanich, Sakorn
    Jantawong, Ponnipa
    Hnoohom, Narit
    Jitpattanakul, Anuchit
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 811 - 814
  • [22] Using CNNs for Designing and Implementing an Automatic Vascular Segmentation Method of Biomedical Images
    Bruno, Pierangela
    Zaffino, Paolo
    Scaramuzzino, Salvatore
    De Rosa, Salvatore
    Indolfi, Ciro
    Calimeri, Francesco
    Spadea, Maria Francesca
    AI*IA 2018 - ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, 11298 : 60 - 70
  • [23] Automatic Detection, Segmentation and Classification of Abdominal Aortic Aneurysm using Deep Learning
    Hong, Ho Aik
    Sheikh, U. U.
    2016 IEEE 12TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA), 2016, : 242 - 246
  • [24] Diffeomorphic Lung Registration Using Deep CNNs and Reinforced Learning
    Onieva, Jorge Onieva
    Marti-Fuster, Berta
    de la Puente, Maria Pedrero
    Estepar, Raul San Jose
    IMAGE ANALYSIS FOR MOVING ORGAN, BREAST, AND THORACIC IMAGES, 2018, 11040 : 284 - 294
  • [25] An automatic method for segmentation of liver lesions in computed tomography images using deep neural networks
    Araújo, José Denes Lima
    da Cruz, Luana Batista
    Ferreira, Jonnison Lima
    da Silva Neto, Otilio Paulo
    Silva, Aristófanes Corrêa
    de Paiva, Anselmo Cardoso
    Gattass, Marcelo
    Expert Systems with Applications, 2021, 180
  • [26] Deep Active Learning for Automatic Segmentation of Maxillary Sinus Lesions Using a Convolutional Neural Network
    Jung, Seok-Ki
    Lim, Ho-Kyung
    Lee, Seungjun
    Cho, Yongwon
    Song, In-Seok
    DIAGNOSTICS, 2021, 11 (04)
  • [27] An automatic method for segmentation of liver lesions in computed tomography images using deep neural networks
    Araujo, Jose Denes Lima
    da Cruz, Luana Batista
    Ferreira, Jonnison Lima
    Neto, Otilio Paulo da Silva
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Gattass, Marcelo
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 180
  • [28] Automatic Detection and Segmentation of Lung Nodule on CT Images
    Yang Chunran
    Wang Yuanyuan
    Guo Yi
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [29] Deep CNNs for Object Detection Using Passive Millimeter Sensors
    Lopez-Tapia, Santiago
    Molina, Rafael
    Perez de la Blanca, Nicolas
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (09) : 2580 - 2589
  • [30] Automatic segmentation of deep endometriosis in the rectosigmoid using deep learning
    Figueredo, Weslley Kelson Ribeiro
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Diniz, Joao Otavio Bandeira
    Brandao, Alice
    Oliveira, Marco Aurelio Pinho
    IMAGE AND VISION COMPUTING, 2024, 151