Automatic Detection and Segmentation of Lung Lesions using Deep Residual CNNs

被引:3
|
作者
Carvalho, Joao. B. S. [1 ]
Moreira, Jose-Maria [1 ]
Figueiredo, Mario A. T. [2 ]
Papanikolaou, Nickolas [3 ]
机构
[1] ULisboa, Inst Super Tecn, Champalimaud Fdn, Lisbon, Portugal
[2] ULisboa, Inst Super Tecn, Inst Telecomunicacoes, Lisbon, Portugal
[3] Champalimaud Fdn, Lisbon, Portugal
来源
2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE) | 2019年
关键词
Radiomics; lung cancer; segmentation; deep learning; convolutional neural network; residual connections; CT;
D O I
10.1109/BIBE.2019.00182
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Early detection of lung cancer has shown to significantly improve patient survival. Apart from lesion detection, tumour segmentation is critical for developing radiomics signatures. In this work, we propose a novel hybrid approach for lung lesion detection and segmentation on CT scans, where the segmentation task is assisted by prior detection of regions containing lesions. For the detection task, we introduce a 2.5D residual deep CNN working in a sliding-window fashion, whereas segmentation is tackled by a modified residual U-Net with a weighted-dice plus cross-entropy loss. Experimental results on the LIDC-IDRI dataset and on the lung tumour task dataset within the Medical Segmentation Decathlon show competitive detection performance of the proposed approach (0.902 recall) and superior segmentation capabilities (0.709 dice score). These results confirm the high potential of simpler models, with lower hardware requirements, thus of more general applicability.
引用
收藏
页码:977 / 983
页数:7
相关论文
共 50 条
  • [1] Deep Deconvolutional Residual Network Based Automatic Lung Nodule Segmentation
    Singadkar, Ganesh
    Mahajan, Abhishek
    Thakur, Meenakshi
    Talbar, Sanjay
    JOURNAL OF DIGITAL IMAGING, 2020, 33 (03) : 678 - 684
  • [2] Deep Deconvolutional Residual Network Based Automatic Lung Nodule Segmentation
    Ganesh Singadkar
    Abhishek Mahajan
    Meenakshi Thakur
    Sanjay Talbar
    Journal of Digital Imaging, 2020, 33 : 678 - 684
  • [3] Automatic Detection and Segmentation of Colorectal Cancer with Deep Residual Convolutional Neural Network
    Akilandeswari, A.
    Sungeetha, D.
    Joseph, Christeena
    Thaiyalnayaki, K.
    Baskaran, K.
    Ramalingam, R. Jothi
    Al-Lohedan, Hamad
    Al-Dhayan, Dhaifallah M.
    Karnan, Muthusamy
    Hadish, Kibrom Meansbo
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [4] Cascade multiscale residual attention CNNs with adaptive ROI for automatic brain tumor segmentation
    Ullah, Zahid
    Usman, Muhammad
    Jeon, Moongu
    Gwak, Jeonghwan
    INFORMATION SCIENCES, 2022, 608 : 1541 - 1556
  • [5] Automatic Segmentation of Bone Marrow Lesions on MRI Using a Deep Learning Method
    Ponnusamy, Raj
    Zhang, Ming
    Wang, Yue
    Sun, Xinyue
    Chowdhury, Mohammad
    Driban, Jeffrey B.
    Mcalindon, Timothy
    Shan, Juan
    BIOENGINEERING-BASEL, 2024, 11 (04):
  • [6] Lung parenchyma segmentation and nodule detection using deep learning
    G. S. Nandeesh
    M. Nagabushanam
    S. Pramodkumar
    S. Nandini
    Journal of Optics, 2024, 53 : 635 - 642
  • [7] Automated Detection and Segmentation of Lung Tumors Using Deep Learning
    Owens, C.
    Rhee, D.
    Fuentes, D.
    Peterson, C.
    Li, J.
    Salehpour, M.
    Court, L.
    Yang, J.
    MEDICAL PHYSICS, 2019, 46 (06) : E447 - E448
  • [8] Lung parenchyma segmentation and nodule detection using deep learning
    Nandeesh, G. S.
    Nagabushanam, M.
    Pramodkumar, S.
    Nandini, S.
    JOURNAL OF OPTICS-INDIA, 2024, 53 (01): : 635 - 642
  • [9] Automatic Brain Structures Segmentation Using Deep Residual Dilated U-Net
    Li, Hongwei
    Zhygallo, Andrii
    Menze, Bjoern
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 385 - 393
  • [10] An Automatic Nuclei Segmentation on Microscopic Images using Deep Residual U-Net
    Shree, H. P. Ramya
    Minavathi
    Dinesh, M. S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (10) : 571 - 577