GLOBAL EXISTENCE AND LARGE TIME BEHAVIOR OF A 2D KELLER-SEGEL SYSTEM IN LOGARITHMIC LEBESGUE SPACES

被引:3
|
作者
Deng, Chao [1 ]
Li, Tong [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
来源
关键词
The Keller-Segel model of chemotaxis; 2D parabolic system; global well-posedness; large time behavior; logarithmic Lebesgue spaces; PARABOLIC-PARABOLIC TYPE; REINFORCED RANDOM-WALKS; CHEMOTAXIS MODEL; TRAVELING-WAVES; NONLINEAR STABILITY; R-N; AGGREGATION;
D O I
10.3934/dcdsb.2018093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the global analysis for the two-dimensional parabolic-parabolic Keller-Segel system in the whole space. By well balanced arguments of the L-1 and L-infinity spaces, we first prove global well-posedness of the system in L-1 x L-infinity which partially answers the question posted by Kozono et al in [19]. For the case mu(0) > 0, we make full use of the linear parts of the system to get the improved long time decay property. Moreover, by using the new formulation involving all linear parts, introducing the logarithmic-weight in time to modify the other endpoint space L-infinity x L-infinity, and carefully decomposing time into several pieces, we are able to establish the global well-posedness and large time behavior of the system in L-ln(infinity) x L-infinity.
引用
收藏
页码:183 / 195
页数:13
相关论文
共 50 条
  • [31] The 2-D stochastic Keller-Segel particle model: existence and uniqueness
    Cattiaux, Patrick
    Pedeches, Laure
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 13 (01): : 447 - 463
  • [32] GLOBAL EXISTENCE AND BOUNDEDNESS IN A PARABOLIC-ELLIPTIC KELLER-SEGEL SYSTEM WITH GENERAL SENSITIVITY
    Fujie, Kentarou
    Senba, Takasi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (01): : 81 - 102
  • [33] Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System
    Jan Haškovec
    Christian Schmeiser
    Journal of Statistical Physics, 2009, 135 : 133 - 151
  • [34] Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in R2
    Conca, Carlos
    Espejo, Elio
    Vilches, Karina
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2011, 22 : 553 - 580
  • [35] Global existence vs. blowup in a fully parabolic quasilinear 1D Keller-Segel system
    Burczak, Jan
    Cieslak, Tomasz
    Morales-Rodrigo, Cristian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) : 5215 - 5228
  • [36] Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane
    Corrias, L.
    Escobedo, M.
    Matos, J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) : 1840 - 1878
  • [37] Global existence, uniqueness and L∞-bound of weak solutions of fractional time-space Keller-Segel system
    Gao, Fei
    Guo, Liujie
    Xie, Xinyi
    Zhan, Hui
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (01) : 232 - 275
  • [38] GLOBAL EXISTENCE OF SOLUTIONS TO A KELLER-SEGEL MODEL WITH LOGISTIC SOURCE IN R2
    Wang, Jinhuan
    Chen, Haomeng
    Zhuang, Mengdi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [39] Behavior in time of solutions of a Keller-Segel system with flux limitation and source term
    Marras, Monica
    Vernier-Piro, Stella
    Yokota, Tomomi
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (05):
  • [40] Global Existence and Decay of Solution to Parabolic-Parabolic Keller-Segel Model in R~d
    钟文彬
    刘晓风
    Journal of Donghua University(English Edition), 2022, 39 (01) : 85 - 94