Kink networks for scalar fields in dimension 1+1

被引:2
|
作者
Chen, Gong [1 ]
Jendrej, Jacek [2 ,3 ]
机构
[1] Univ Toronto, Dept Math, 40 St George St, Toronto, ON, Canada
[2] CNRS, 99 Av J-B Clement, F-93430 Villetaneuse, France
[3] Univ Sorbonne Paris Nord, LAGA, UMR 7539, 99 Av J-B Clement, F-93430 Villetaneuse, France
关键词
Wave; Kink; Multi-soliton; EQUATION; SOLITONS; SPACE;
D O I
10.1016/j.na.2021.112643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a scalar field equation in dimension 1 + 1 with a positive external potential having non-degenerate isolated zeros. We construct weakly interacting pure multi-solitons, that is solutions converging exponentially in time to a superposition of Lorentz-transformed kinks, in the case of distinct velocities. We find that these solutions form a 2K-dimensional smooth manifold in the space of solutions, where K is the number of the kinks. We prove that this manifold is invariant under the transformations corresponding to the invariances of the equation, that is space-time translations and Lorentz boosts. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Sharp asymptotic behavior for wetting models in (1+1)-dimension
    Caravenna, F
    Giacomin, G
    Zambotti, L
    ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 345 - 362
  • [32] Unparticle in (1+1) dimension with one-loop correction
    Rahaman, Anisur
    MODERN PHYSICS LETTERS A, 2014, 29 (14)
  • [33] Quantum charged fields in (1+1) Rindler space
    Gabriel, C
    Spindel, P
    ANNALS OF PHYSICS, 2000, 284 (02) : 263 - 335
  • [34] Kink instability and stabilization of the Friedmann universe with scalar fields
    Maeda, H
    Harada, T
    PHYSICS LETTERS B, 2005, 607 (1-2) : 8 - 16
  • [35] Complete Invariant Characterization of Scalar Linear (1+1) Parabolic Equations
    Mahomed, Fazal M.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 1) : 112 - 123
  • [36] Extended multi-scalar field theories in (1+1) dimensions
    Aguirre, A. R.
    Souza, E. S.
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (12):
  • [37] Complete Invariant Characterization of Scalar Linear (1+1) Parabolic Equations
    Fazal M Mahomed
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 112 - 123
  • [38] Fields of Cohomological Dimension 1
    Stix, Jakob
    RATIONAL POINTS AND ARITHMETIC OF FUNDAMENTAL GROUPS: EVIDENCE FOR THE SECTION CONJECTURE, 2013, 2054 : 213 - 218
  • [39] Stability of Quasilinear Waves in 1+1 Dimension Under Null Condition
    Dong, Shijie
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (02) : 961 - 970
  • [40] Highly nonparaxial (1+1)-D subwavelength optical fields
    Rizza, C.
    Ciattoni, A.
    Palange, E.
    OPTICS EXPRESS, 2010, 18 (08): : 7617 - 7624