Kink networks for scalar fields in dimension 1+1

被引:2
|
作者
Chen, Gong [1 ]
Jendrej, Jacek [2 ,3 ]
机构
[1] Univ Toronto, Dept Math, 40 St George St, Toronto, ON, Canada
[2] CNRS, 99 Av J-B Clement, F-93430 Villetaneuse, France
[3] Univ Sorbonne Paris Nord, LAGA, UMR 7539, 99 Av J-B Clement, F-93430 Villetaneuse, France
关键词
Wave; Kink; Multi-soliton; EQUATION; SOLITONS; SPACE;
D O I
10.1016/j.na.2021.112643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a scalar field equation in dimension 1 + 1 with a positive external potential having non-degenerate isolated zeros. We construct weakly interacting pure multi-solitons, that is solutions converging exponentially in time to a superposition of Lorentz-transformed kinks, in the case of distinct velocities. We find that these solutions form a 2K-dimensional smooth manifold in the space of solutions, where K is the number of the kinks. We prove that this manifold is invariant under the transformations corresponding to the invariances of the equation, that is space-time translations and Lorentz boosts. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Interaction Solutions for the Fractional KdVSKR Equations in (1+1)-Dimension and (2+1)-Dimension
    Zhang, Lihua
    Zheng, Zitong
    Shen, Bo
    Wang, Gangwei
    Wang, Zhenli
    FRACTAL AND FRACTIONAL, 2024, 8 (09)
  • [22] Particle level screening of scalar forces in 1+1 dimensions
    Burrage, Clare
    Elder, Benjamin
    Millington, Peter
    PHYSICAL REVIEW D, 2019, 99 (02)
  • [23] Spin-1/2 Particle in Scalar-Vector-Pseudoscalar Spatially Dependent Mass Coulomb Fields: 1+1 Dimensions
    Rajabi, A. A.
    Hamzavi, M.
    FEW-BODY SYSTEMS, 2013, 54 (11) : 2067 - 2071
  • [24] Intermediate Disorder Regime for Directed Polymers in Dimension 1+1
    Alberts, Tom
    Khanin, Kostya
    Quastel, Jeremy
    PHYSICAL REVIEW LETTERS, 2010, 105 (09)
  • [25] Scaling limits of equilibrium wetting models in (1+1)-dimension
    Deuschel, JD
    Giacomin, G
    Zambotti, L
    PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (04) : 471 - 500
  • [26] Statistical mechanics of the wave maps equation in dimension 1+1
    Brzezniak, Zdzislaw
    Jendrej, Jacek
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (01)
  • [27] Random deposition of two annihilating species in the (1+1) dimension
    López, RH
    Manzi, S
    Romá, F
    Faccio, RJ
    PHYSICAL REVIEW E, 1999, 60 (01): : 89 - 93
  • [28] THE INTERMEDIATE DISORDER REGIME FOR DIRECTED POLYMERS IN DIMENSION 1+1
    Alberts, Tom
    Khanin, Konstantin
    Quastel, Jeremy
    ANNALS OF PROBABILITY, 2014, 42 (03): : 1212 - 1256
  • [29] Level crossing analysis of the magnetohydrodynamic equation in (1+1)-dimension
    Masoudi, A. A.
    Farahani, S. Vasheghani
    Soltani, M. R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (29): : 4917 - 4927
  • [30] Scaling limits of equilibrium wetting models in (1+1)–dimension
    Jean–Dominique Deuschel
    Giambattista Giacomin
    Lorenzo Zambotti
    Probability Theory and Related Fields, 2005, 132 : 471 - 500