Kink networks for scalar fields in dimension 1+1

被引:2
|
作者
Chen, Gong [1 ]
Jendrej, Jacek [2 ,3 ]
机构
[1] Univ Toronto, Dept Math, 40 St George St, Toronto, ON, Canada
[2] CNRS, 99 Av J-B Clement, F-93430 Villetaneuse, France
[3] Univ Sorbonne Paris Nord, LAGA, UMR 7539, 99 Av J-B Clement, F-93430 Villetaneuse, France
关键词
Wave; Kink; Multi-soliton; EQUATION; SOLITONS; SPACE;
D O I
10.1016/j.na.2021.112643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a scalar field equation in dimension 1 + 1 with a positive external potential having non-degenerate isolated zeros. We construct weakly interacting pure multi-solitons, that is solutions converging exponentially in time to a superposition of Lorentz-transformed kinks, in the case of distinct velocities. We find that these solutions form a 2K-dimensional smooth manifold in the space of solutions, where K is the number of the kinks. We prove that this manifold is invariant under the transformations corresponding to the invariances of the equation, that is space-time translations and Lorentz boosts. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Fun and frustration with quarkonium in a 1+1 dimension
    Bhalerao, RS
    Ram, B
    AMERICAN JOURNAL OF PHYSICS, 2001, 69 (07) : 817 - 818
  • [12] A MOVING GRID METHOD FOR (1+1) DIMENSION
    LIAO, GJ
    SU, JZ
    APPLIED MATHEMATICS LETTERS, 1995, 8 (04) : 47 - 49
  • [13] FUN AND FRUSTRATION WITH HYDROGEN IN A 1+1 DIMENSION
    GALIC, H
    AMERICAN JOURNAL OF PHYSICS, 1988, 56 (04) : 312 - 317
  • [14] Hamiltonian renormalisation II. Renormalisation flow of 1+1 dimensional free scalar fields: derivation
    Lang, T.
    Liegener, K.
    Thiemann, T.
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (24)
  • [15] EXACT SCALAR FIELD COSMOLOGIES IN (1+1) DIMENSIONS
    CHIMENTO, LP
    COSSARINI, AE
    CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (05) : 1177 - 1184
  • [16] Hamiltonian renormalization III. Renormalisation flow of 1+1 dimensional free scalar fields: properties
    Lang, T.
    Liegener, K.
    Thiemann, T.
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (24)
  • [17] Mechanization of scalar field theory in 1+1 dimensions
    Blaschke, Filip
    Karpisek, Ondrej Nicolas
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2022, 2022 (10):
  • [18] Gravitational form factors of a kink in 1+1 dimensional φ4 model
    Ito, Hiroaki
    Kitazawa, Masakiyo
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (08)
  • [19] Instability of scalar charges in (1+1) and (2+1) dimensions
    Burko, LM
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (14) : 3745 - 3752
  • [20] Path integral of a relativistic spinning particle in (1+1) dimension with vector and scalar linear potentials in the presence of a minimal length
    Benzair, H.
    Merad, M.
    Boudjedaa, T.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (07):