Asymptotics for Rough Stochastic Volatility Models

被引:53
|
作者
Forde, Martin [1 ]
Zhang, Hongzhong [2 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Columbia Univ, Dept Ind Engn & Operat Res, IEOR, New York, NY 10027 USA
来源
关键词
fractional stochastic volatility; fractional Brownian motion; large deviations; implied volatility asymptotics; rough paths; FRACTIONAL BROWNIAN MOTIONS; LONG MEMORY; IMPLIED VOLATILITY; LARGE DEVIATIONS; OPTIONS;
D O I
10.1137/15M1009330
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Using the large deviation principle (LDP) for a rescaled fractional Brownian motion B-t(H), where the rate function is defined via the reproducing kernel Hilbert space, we compute small-time asymptotics for a correlated fractional stochastic volatility model of the form dS(t) = S-t sigma(Y-t)((rho) over bar dW(t) + rho dB(t)), dY(t) = dB(t)(H), where sigma is alpha-Holder continuous for some alpha is an element of (0, 1]; in particular, we show that t(H-1/2) log S-t satisfies the LDP as t -> 0 and the model has a well-defined implied volatility smile as t -> 0, when the log-moneyness k(t) = xt(1/2-H). Thus the smile steepens to infinity or flattens to zero depending on whether H is an element of (0, 1/2) or H is an element of(1/2,1). We also compute large-time asymptotics for a fractional local-stochastic volatility model of the form dS(t) = S-t(beta)vertical bar Y-t vertical bar(p)dW(t), dY(t) = dB(t)(H), and we generalize two identities in Matsumoto and Yor [Probab. Sarv., 2 (2005), pp. 312-347] to show that 1/t(2H) log 1/t integral(t)(0) e(2BsH) ds and 1/t(2H) (log fot integral(t)(0) e(2(mu s+BsH)) ds - mu t) converge in law to 2max(0 <= s <= 1)B(s)(H) and 2B(1), respectively, for H is an element of (0, 1/2) and mu > 0 as t -> infinity.
引用
收藏
页码:114 / 145
页数:32
相关论文
共 50 条
  • [1] Asymptotics for volatility derivatives in multi-factor rough volatility models
    Chloe Lacombe
    Aitor Muguruza
    Henry Stone
    [J]. Mathematics and Financial Economics, 2021, 15 : 545 - 577
  • [2] Asymptotics for volatility derivatives in multi-factor rough volatility models
    Lacombe, Chloe
    Muguruza, Aitor
    Stone, Henry
    [J]. MATHEMATICS AND FINANCIAL ECONOMICS, 2021, 15 (03) : 545 - 577
  • [3] PRECISE ASYMPTOTICS: ROBUST STOCHASTIC VOLATILITY MODELS
    Friz, P. K.
    Gassiat, P.
    Pigato, P.
    [J]. ANNALS OF APPLIED PROBABILITY, 2021, 31 (02): : 896 - 940
  • [4] Asymptotics for multifactor Volterra type stochastic volatility models
    Catalini, Giulia
    Pacchiarotti, Barbara
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2023, 41 (06) : 1025 - 1055
  • [5] Pathwise Asymptotics for Volterra Type Stochastic Volatility Models
    Miriana Cellupica
    Barbara Pacchiarotti
    [J]. Journal of Theoretical Probability, 2021, 34 : 682 - 727
  • [6] Pathwise Asymptotics for Volterra Type Stochastic Volatility Models
    Cellupica, Miriana
    Pacchiarotti, Barbara
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (02) : 682 - 727
  • [7] DECOMPOSITION FORMULA FOR ROUGH VOLTERRA STOCHASTIC VOLATILITY MODELS
    Merino, Raul
    Pospisil, Jan
    Sobotka, Tomas
    Sottinen, Tommi
    Vives, Josep
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2021, 24 (02)
  • [8] Log-Modulated Rough Stochastic Volatility Models
    Bayer, Christian
    Harang, Fabian A.
    Pigato, Paolo
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2021, 12 (03): : 1257 - 1284
  • [9] ON THE ASYMPTOTICS OF FAST MEAN-REVERSION STOCHASTIC VOLATILITY MODELS
    Souza, Max O.
    Zubelli, Jorge P.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2007, 10 (05) : 817 - 835
  • [10] Multiscale stochastic volatility asymptotics
    Fouque, JP
    Papanicolaou, G
    Sircar, R
    Solna, K
    [J]. MULTISCALE MODELING & SIMULATION, 2003, 2 (01): : 22 - 42