Asymptotics for Rough Stochastic Volatility Models

被引:53
|
作者
Forde, Martin [1 ]
Zhang, Hongzhong [2 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Columbia Univ, Dept Ind Engn & Operat Res, IEOR, New York, NY 10027 USA
来源
关键词
fractional stochastic volatility; fractional Brownian motion; large deviations; implied volatility asymptotics; rough paths; FRACTIONAL BROWNIAN MOTIONS; LONG MEMORY; IMPLIED VOLATILITY; LARGE DEVIATIONS; OPTIONS;
D O I
10.1137/15M1009330
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Using the large deviation principle (LDP) for a rescaled fractional Brownian motion B-t(H), where the rate function is defined via the reproducing kernel Hilbert space, we compute small-time asymptotics for a correlated fractional stochastic volatility model of the form dS(t) = S-t sigma(Y-t)((rho) over bar dW(t) + rho dB(t)), dY(t) = dB(t)(H), where sigma is alpha-Holder continuous for some alpha is an element of (0, 1]; in particular, we show that t(H-1/2) log S-t satisfies the LDP as t -> 0 and the model has a well-defined implied volatility smile as t -> 0, when the log-moneyness k(t) = xt(1/2-H). Thus the smile steepens to infinity or flattens to zero depending on whether H is an element of (0, 1/2) or H is an element of(1/2,1). We also compute large-time asymptotics for a fractional local-stochastic volatility model of the form dS(t) = S-t(beta)vertical bar Y-t vertical bar(p)dW(t), dY(t) = dB(t)(H), and we generalize two identities in Matsumoto and Yor [Probab. Sarv., 2 (2005), pp. 312-347] to show that 1/t(2H) log 1/t integral(t)(0) e(2BsH) ds and 1/t(2H) (log fot integral(t)(0) e(2(mu s+BsH)) ds - mu t) converge in law to 2max(0 <= s <= 1)B(s)(H) and 2B(1), respectively, for H is an element of (0, 1/2) and mu > 0 as t -> infinity.
引用
收藏
页码:114 / 145
页数:32
相关论文
共 50 条
  • [21] ROUGH FRACTIONAL STOCHASTIC VOLATILITY MODELING
    Nourian, Farshid
    Bastani, Ali Foroush
    Lakestani, Mehrdad
    [J]. PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL II, 2020, : 290 - 292
  • [22] Least squares Monte Carlo methods in stochastic Volterra rough volatility models
    Guerreiro, Henrique
    Guerra, Joao
    [J]. JOURNAL OF COMPUTATIONAL FINANCE, 2022, 26 (03) : 73 - 101
  • [23] Small-Time Asymptotics for Gaussian Self-Similar Stochastic Volatility Models
    Gulisashvili, Archil
    Viens, Frederi
    Zhang, Xin
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 82 (01): : 183 - 223
  • [24] SMALL-TIME ASYMPTOTICS FOR FAST MEAN-REVERTING STOCHASTIC VOLATILITY MODELS
    Feng, Jin
    Fouque, Jean-Pierre
    Kumar, Rohini
    [J]. ANNALS OF APPLIED PROBABILITY, 2012, 22 (04): : 1541 - 1575
  • [25] Small-Time Asymptotics for Gaussian Self-Similar Stochastic Volatility Models
    Archil Gulisashvili
    Frederi Viens
    Xin Zhang
    [J]. Applied Mathematics & Optimization, 2020, 82 : 183 - 223
  • [26] The rough Hawkes Heston stochastic volatility model
    Bondi, Alessandro
    Pulido, Sergio
    Scotti, Simone
    [J]. MATHEMATICAL FINANCE, 2024,
  • [27] Impact of rough stochastic volatility models on long-term life insurance pricing
    Jean-Loup Dupret
    Jérôme Barbarin
    Donatien Hainaut
    [J]. European Actuarial Journal, 2023, 13 : 235 - 275
  • [28] Impact of rough stochastic volatility models on long-term life insurance pricing
    Dupret, Jean-Loup
    Barbarin, Jerome
    Hainaut, Donatien
    [J]. EUROPEAN ACTUARIAL JOURNAL, 2023, 13 (01) : 235 - 275
  • [29] Multifactor Approximation of Rough Volatility Models
    Jaber, Eduardo Abi
    El Euch, Omar
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (02): : 309 - 349
  • [30] CVA in fractional and rough volatility models
    Alos, Elisa
    Antonelli, Fabio
    Ramponi, Alessandro
    Scarlatti, Sergio
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2023, 442