SMALL-TIME ASYMPTOTICS FOR FAST MEAN-REVERTING STOCHASTIC VOLATILITY MODELS

被引:35
|
作者
Feng, Jin [1 ]
Fouque, Jean-Pierre [2 ]
Kumar, Rohini [2 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[2] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
来源
ANNALS OF APPLIED PROBABILITY | 2012年 / 22卷 / 04期
基金
美国国家科学基金会;
关键词
Stochastic volatility; multi-scale asymptotic; large deviation principle; implied volatility smile/skew; IMPLIED VOLATILITY; LARGE DEVIATIONS;
D O I
10.1214/11-AAP801
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study stochastic volatility models in regimes where the maturity is small, but large compared to the mean-reversion time of the stochastic volatility factor. The problem falls in the class of averaging/homogenization problems for nonlinear RIB-type equations where the "fast variable" lives in a noncompact space. We develop a general argument based on viscosity solutions which we apply to the two regimes studied in the paper. We derive a large deviation principle, and we deduce asymptotic prices for out-of-the-money call and put options, and their corresponding implied volatilities. The results of this paper generalize the ones obtained in Feng, Forde and Fouque [SIAM J. Financial Math. 1 (2010) 126-141] by a moment generating function computation in the particular case of the Heston model.
引用
收藏
页码:1541 / 1575
页数:35
相关论文
共 50 条
  • [1] TIME-CHANGED FAST MEAN-REVERTING STOCHASTIC VOLATILITY MODELS
    Lorig, Matthew
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2011, 14 (08) : 1355 - 1383
  • [2] Short-Maturity Asymptotics for a Fast Mean-Reverting Heston Stochastic Volatility Model
    Feng, Jin
    Forde, Martin
    Fouque, Jean-Pierre
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2010, 1 (01): : 126 - 141
  • [3] Spectral Decomposition of Option Prices in Fast Mean-Reverting Stochastic Volatility Models
    Fouque, Jean-Pierre
    Jaimungal, Sebastian
    Lorig, Matthew J.
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01): : 665 - 691
  • [4] Simulation of Conditional Expectations Under Fast Mean-Reverting Stochastic Volatility Models
    Cozma, Andrei S.
    Reisinger, Christoph
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 223 - 240
  • [5] Financial Modeling in a Fast Mean-Reverting Stochastic Volatility Environment
    Jean-Pierre Fouque
    George Papanicolaou
    K. Ronnie Sircar
    [J]. Asia-Pacific Financial Markets, 1999, 6 (1) : 37 - 48
  • [6] A Fast Mean-Reverting Correction to Heston's Stochastic Volatility Model
    Fouque, Jean-Pierre
    Lorig, Matthew J.
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01): : 221 - 254
  • [7] Static Hedges of Barrier Options Under Fast Mean-Reverting Stochastic Volatility
    Huh, Jeonggyu
    Jeon, Jaegi
    Ma, Yong-Ki
    [J]. COMPUTATIONAL ECONOMICS, 2020, 55 (01) : 185 - 210
  • [8] Option price with stochastic volatility for both fast and slow mean-reverting regimes
    Zhang, Qiang
    Han, Jiguang
    Gao, Ming
    [J]. COMPTES RENDUS MATHEMATIQUE, 2013, 351 (9-10) : 411 - 414
  • [9] Small-Time Asymptotics for Gaussian Self-Similar Stochastic Volatility Models
    Archil Gulisashvili
    Frederi Viens
    Xin Zhang
    [J]. Applied Mathematics & Optimization, 2020, 82 : 183 - 223
  • [10] Static Hedges of Barrier Options Under Fast Mean-Reverting Stochastic Volatility
    Jeonggyu Huh
    Jaegi Jeon
    Yong-Ki Ma
    [J]. Computational Economics, 2020, 55 : 185 - 210