TIME-CHANGED FAST MEAN-REVERTING STOCHASTIC VOLATILITY MODELS

被引:3
|
作者
Lorig, Matthew [1 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
关键词
Stochastic volatility; stochastic time-change; implied volatility; levy subordinator; jump-diffusion; multiscale;
D O I
10.1142/S0219024911006875
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We introduce a class of randomly time-changed fast mean-reverting stochastic volatility (TC-FMR-SV) models. Using spectral theory and singular perturbation techniques, we derive an approximation for the price of any European option in the TC-FMR-SV setting. Three examples of random time-changes are provided and are shown to induce distinct implied volatility surfaces. The key features of the TC-FMR-SV framework are that (i) it is able to incorporate jumps into the price process of the underlying asset (ii) it allows for the leverage effect and (iii) it can accommodate multiple factors of volatility, which operate on different time-scales.
引用
收藏
页码:1355 / 1383
页数:29
相关论文
共 50 条
  • [1] SMALL-TIME ASYMPTOTICS FOR FAST MEAN-REVERTING STOCHASTIC VOLATILITY MODELS
    Feng, Jin
    Fouque, Jean-Pierre
    Kumar, Rohini
    [J]. ANNALS OF APPLIED PROBABILITY, 2012, 22 (04): : 1541 - 1575
  • [2] Spectral Decomposition of Option Prices in Fast Mean-Reverting Stochastic Volatility Models
    Fouque, Jean-Pierre
    Jaimungal, Sebastian
    Lorig, Matthew J.
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01): : 665 - 691
  • [3] Simulation of Conditional Expectations Under Fast Mean-Reverting Stochastic Volatility Models
    Cozma, Andrei S.
    Reisinger, Christoph
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 223 - 240
  • [4] Financial Modeling in a Fast Mean-Reverting Stochastic Volatility Environment
    Jean-Pierre Fouque
    George Papanicolaou
    K. Ronnie Sircar
    [J]. Asia-Pacific Financial Markets, 1999, 6 (1) : 37 - 48
  • [5] A Fast Mean-Reverting Correction to Heston's Stochastic Volatility Model
    Fouque, Jean-Pierre
    Lorig, Matthew J.
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01): : 221 - 254
  • [6] TIME-CHANGED CIR DEFAULT INTENSITIES WITH TWO-SIDED MEAN-REVERTING JUMPS
    Mendoza-Arriaga, Rafael
    Linetsky, Vadim
    [J]. ANNALS OF APPLIED PROBABILITY, 2014, 24 (02): : 811 - 856
  • [7] Static Hedges of Barrier Options Under Fast Mean-Reverting Stochastic Volatility
    Huh, Jeonggyu
    Jeon, Jaegi
    Ma, Yong-Ki
    [J]. COMPUTATIONAL ECONOMICS, 2020, 55 (01) : 185 - 210
  • [8] Option price with stochastic volatility for both fast and slow mean-reverting regimes
    Zhang, Qiang
    Han, Jiguang
    Gao, Ming
    [J]. COMPTES RENDUS MATHEMATIQUE, 2013, 351 (9-10) : 411 - 414
  • [9] Static Hedges of Barrier Options Under Fast Mean-Reverting Stochastic Volatility
    Jeonggyu Huh
    Jaegi Jeon
    Yong-Ki Ma
    [J]. Computational Economics, 2020, 55 : 185 - 210
  • [10] A Jump Diffusion Model with Fast Mean-Reverting Stochastic Volatility for Pricing Vulnerable Options
    Nthiwa, Joy K.
    Kube, Ananda O.
    Omari, Cyprian O.
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2023, 2023