TIME-CHANGED FAST MEAN-REVERTING STOCHASTIC VOLATILITY MODELS

被引:3
|
作者
Lorig, Matthew [1 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
关键词
Stochastic volatility; stochastic time-change; implied volatility; levy subordinator; jump-diffusion; multiscale;
D O I
10.1142/S0219024911006875
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We introduce a class of randomly time-changed fast mean-reverting stochastic volatility (TC-FMR-SV) models. Using spectral theory and singular perturbation techniques, we derive an approximation for the price of any European option in the TC-FMR-SV setting. Three examples of random time-changes are provided and are shown to induce distinct implied volatility surfaces. The key features of the TC-FMR-SV framework are that (i) it is able to incorporate jumps into the price process of the underlying asset (ii) it allows for the leverage effect and (iii) it can accommodate multiple factors of volatility, which operate on different time-scales.
引用
收藏
页码:1355 / 1383
页数:29
相关论文
共 50 条
  • [21] Asymptotic expansion for pricing options for a mean-reverting asset with multiscale stochastic volatility
    Chiu, Mel Choi
    Lo, Yu Wai
    Wong, Hoi Ying
    [J]. OPERATIONS RESEARCH LETTERS, 2011, 39 (04) : 289 - 295
  • [22] PRICING HOLDER-EXTENDABLE CALL OPTIONS WITH MEAN-REVERTING STOCHASTIC VOLATILITY
    Ibrahim, S. N. I.
    Diaz-Hernandez, A.
    O'Hara, J. G.
    Constantinou, N.
    [J]. ANZIAM JOURNAL, 2019, 61 (04): : 382 - 397
  • [23] Estimating fast mean-reverting jumps in electricity market models
    Deschatre, Thomas
    Feron, Olivier
    Hoffmann, Marc
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 963 - 1002
  • [24] Filtering for fast mean-reverting processes
    Papanicolaou, Andrew
    [J]. ASYMPTOTIC ANALYSIS, 2010, 70 (3-4) : 155 - 176
  • [25] Optimal Strategy of the Dynamic Mean-Variance Problem for Pairs Trading under a Fast Mean-Reverting Stochastic Volatility Model
    Zhang, Yaoyuan
    Xiong, Dewen
    [J]. MATHEMATICS, 2023, 11 (09)
  • [26] Optimal Portfolio under Fast Mean-Reverting Fractional Stochastic Environment
    Fouque, Jean-Pierre
    Hu, Ruimeng
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2018, 9 (02): : 564 - 601
  • [27] Additive-multiplicative stochastic models of financial mean-reverting processes
    Anteneodo, C
    Riera, R
    [J]. PHYSICAL REVIEW E, 2005, 72 (02):
  • [28] Estimation of Parameters in Mean-Reverting Stochastic Systems
    Tian, Tianhai
    Zhou, Yanli
    Wu, Yonghong
    Ge, Xiangyu
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [29] Stochastic volatility and the mean reverting process
    Sabanis, S
    [J]. JOURNAL OF FUTURES MARKETS, 2003, 23 (01) : 33 - 47
  • [30] STOCK-PRICE VOLATILITY, MEAN-REVERTING DIFFUSION, AND NOISE
    MERVILLE, LJ
    PIEPTEA, DR
    [J]. JOURNAL OF FINANCIAL ECONOMICS, 1989, 24 (01) : 193 - 214