Asymptotics for volatility derivatives in multi-factor rough volatility models

被引:3
|
作者
Lacombe, Chloe [1 ]
Muguruza, Aitor [1 ,2 ]
Stone, Henry [1 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Synergis, London, England
基金
英国工程与自然科学研究理事会;
关键词
Rough volatility; VIX; Large deviations; Realised variance; Small-time asymptotics; Gaussian measure; Reproducing kernel Hilbert space; OPTIONS;
D O I
10.1007/s11579-020-00288-5
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We study the small-time implied volatility smile for Realised Variance options, and investigate the effect of correlation in multi-factor models on the linearity of the smile. We also develop an approximation scheme for the Realised Variance density, allowing fast and accurate pricing of Volatility Swaps. Additionally, we establish small-noise asymptotic behaviour of a general class of VIX options in the large strike regime.
引用
收藏
页码:545 / 577
页数:33
相关论文
共 50 条
  • [1] Asymptotics for volatility derivatives in multi-factor rough volatility models
    Chloe Lacombe
    Aitor Muguruza
    Henry Stone
    [J]. Mathematics and Financial Economics, 2021, 15 : 545 - 577
  • [2] Asymptotics for Rough Stochastic Volatility Models
    Forde, Martin
    Zhang, Hongzhong
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2017, 8 (01): : 114 - 145
  • [3] Multi-factor volatility and stock returns
    He, Zhongzhi
    Zhu, Jie
    Zhu, Xiaoneng
    [J]. JOURNAL OF BANKING & FINANCE, 2015, 61 : S132 - S149
  • [4] Volatility, Correlation, and Diversification in a Multi-Factor World
    Roll, Richard
    [J]. JOURNAL OF PORTFOLIO MANAGEMENT, 2013, 39 (02): : 11 - 18
  • [5] Volatility Options in Rough Volatility Models
    Horvath, Blanka
    Jacquier, Antoine
    Tankov, Peter
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2020, 11 (02): : 437 - 469
  • [6] ASYMPTOTICS OF IMPLIED VOLATILITY IN LOCAL VOLATILITY MODELS
    Gatheral, Jim
    Hsu, Elton P.
    Laurence, Peter
    Ouyang, Cheng
    Wang, Tai-Ho
    [J]. MATHEMATICAL FINANCE, 2012, 22 (04) : 591 - 620
  • [7] Efficient Monte Carlo Simulation for Pricing Variance Derivatives under Multi-Factor Stochastic Volatility Models
    Ma, Junmei
    Gu, Guiding
    [J]. INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY II, PTS 1-4, 2013, 411-414 : 1089 - 1094
  • [8] Optimal investment under multi-factor stochastic volatility
    Escobar, Marcos
    Ferrando, Sebastian
    Rubtsov, Alexey
    [J]. QUANTITATIVE FINANCE, 2017, 17 (02) : 241 - 260
  • [9] Efficient simulation of a multi-factor stochastic volatility model
    Goencue, Ahmet
    Oekten, Giray
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 329 - 335
  • [10] Robust Portfolio Optimization with Multi-Factor Stochastic Volatility
    Ben-Zhang Yang
    Xiaoping Lu
    Guiyuan Ma
    Song-Ping Zhu
    [J]. Journal of Optimization Theory and Applications, 2020, 186 : 264 - 298