Asymptotics for volatility derivatives in multi-factor rough volatility models

被引:4
|
作者
Lacombe, Chloe [1 ]
Muguruza, Aitor [1 ,2 ]
Stone, Henry [1 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] Synergis, London, England
基金
英国工程与自然科学研究理事会;
关键词
Rough volatility; VIX; Large deviations; Realised variance; Small-time asymptotics; Gaussian measure; Reproducing kernel Hilbert space; OPTIONS;
D O I
10.1007/s11579-020-00288-5
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We study the small-time implied volatility smile for Realised Variance options, and investigate the effect of correlation in multi-factor models on the linearity of the smile. We also develop an approximation scheme for the Realised Variance density, allowing fast and accurate pricing of Volatility Swaps. Additionally, we establish small-noise asymptotic behaviour of a general class of VIX options in the large strike regime.
引用
收藏
页码:545 / 577
页数:33
相关论文
共 50 条
  • [21] VALUATION, HEDGING, AND BOUNDS OF SWAPS UNDER MULTI-FACTOR BNS-TYPE STOCHASTIC VOLATILITY MODELS
    Issaka, Aziz
    ANNALS OF FINANCIAL ECONOMICS, 2020, 15 (02)
  • [22] Multifactor Approximation of Rough Volatility Models
    Jaber, Eduardo Abi
    El Euch, Omar
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (02): : 309 - 349
  • [23] Partial Hedging in Rough Volatility Models
    Motte, Edouard
    Hainaut, Donatien
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2024, 15 (03): : 601 - 652
  • [24] PRECISE ASYMPTOTICS: ROBUST STOCHASTIC VOLATILITY MODELS
    Friz, P. K.
    Gassiat, P.
    Pigato, P.
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (02): : 896 - 940
  • [25] New solvable stochastic volatility models for pricing volatility derivatives
    Itkin, Andrey
    REVIEW OF DERIVATIVES RESEARCH, 2013, 16 (02) : 111 - 134
  • [26] New solvable stochastic volatility models for pricing volatility derivatives
    Andrey Itkin
    Review of Derivatives Research, 2013, 16 : 111 - 134
  • [27] THE FRACTIONAL VOLATILITY MODEL AND ROUGH VOLATILITY
    Mendes, R. Vilela
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2023, 26 (02N03)
  • [28] Local volatility under rough volatility
    Bourgey, Florian
    De Marco, Stefano
    Friz, Peter K.
    Pigato, Paolo
    MATHEMATICAL FINANCE, 2023, 33 (04) : 1119 - 1145
  • [29] Variance reduction for Monte Carlo methods to evaluate option prices under multi-factor stochastic volatility models
    Fouque, JP
    Han, CH
    QUANTITATIVE FINANCE, 2004, 4 (05) : 597 - 606
  • [30] Volatility is rough
    Gatheral, Jim
    Jaisson, Thibault
    Rosenbaum, Mathieu
    QUANTITATIVE FINANCE, 2018, 18 (06) : 933 - 949