Log-Modulated Rough Stochastic Volatility Models

被引:7
|
作者
Bayer, Christian [1 ]
Harang, Fabian A. [2 ]
Pigato, Paolo [3 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Univ Oslo, Dept Math, N-0316 Oslo, Norway
[3] Univ Roma Tor Vergata, Dept Econ & Finance, I-00133 Rome, Italy
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2021年 / 12卷 / 03期
关键词
rough volatility models; stochastic volatility; rough Bergomi model; implied skew; fractional Brownian motion; log Brownian motion; THE-MONEY SKEW;
D O I
10.1137/20M135902X
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We propose a new class of rough stochastic volatility models obtained by modulating the power-law kernel defining the fractional Brownian motion (fBm) by a logarithmic term, such that the kernel retains square integrability even in the limit case of vanishing Hurst index H. The so-obtained logmodulated fractional Brownian motion (log-fBm) is a continuous Gaussian process even for H = 0. As a consequence, the resulting super-rough stochastic volatility models can be analyzed over the whole range 0 <= H < 1/2 without the need of further normalization. We obtain skew asymptotics of the form log(1/T)(-pT H 1/2) as T -> 0, H >= 0, so no flattening of the skew occurs as H -> 0.
引用
收藏
页码:1257 / 1284
页数:28
相关论文
共 50 条
  • [1] Asymptotics for Rough Stochastic Volatility Models
    Forde, Martin
    Zhang, Hongzhong
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2017, 8 (01): : 114 - 145
  • [2] Rough PDEs for Local Stochastic Volatility Models
    Bank, Peter
    Bayer, Christian
    Friz, Peter K.
    Pelizzari, Luca
    MATHEMATICAL FINANCE, 2025,
  • [3] DECOMPOSITION FORMULA FOR ROUGH VOLTERRA STOCHASTIC VOLATILITY MODELS
    Merino, Raul
    Pospisil, Jan
    Sobotka, Tomas
    Sottinen, Tommi
    Vives, Josep
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2021, 24 (02)
  • [4] Robustness and sensitivity analyses of rough Volterra stochastic volatility models
    Matas, Jan
    Pospisil, Jan
    ANNALS OF FINANCE, 2023, 19 (04) : 523 - 543
  • [5] Robustness and sensitivity analyses of rough Volterra stochastic volatility models
    Jan Matas
    Jan Pospíšil
    Annals of Finance, 2023, 19 : 523 - 543
  • [6] Volatility Options in Rough Volatility Models
    Horvath, Blanka
    Jacquier, Antoine
    Tankov, Peter
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2020, 11 (02): : 437 - 469
  • [7] A general valuation framework for rough stochastic local volatility models and applications☆
    Yang, Wensheng
    Ma, Jingtang
    Cui, Zhenyu
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2025, 322 (01) : 307 - 324
  • [8] Approximation Rates for Deep Calibration of (Rough) Stochastic Volatility Models \ast
    Biagini, Francesca
    Gonon, Lukas
    Walter, Niklas
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2024, 15 (03): : 734 - 784
  • [9] The log GARCH stochastic volatility model
    Guerbyenne, Hafida
    Hamdi, Faycal
    Hamrat, Malika
    STATISTICS & PROBABILITY LETTERS, 2024, 214
  • [10] ON A GENERALIZED MAXIMUM PRINCIPLE FOR A TRANSPORT-DIFFUSION MODEL WITH log-MODULATED FRACTIONAL DISSIPATION
    Dong, Hongjie
    Li, Dong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) : 3437 - 3454