Efficient importance sampling imputation algorithms for quantile and composite quantile regression

被引:0
|
作者
Cheng, Hao [1 ,2 ]
机构
[1] China Assoc Sci & Technol, Natl Acad Innovat Strategy, Fuxing Rd 3, Beijing, Peoples R China
[2] Renmin Univ China, Sch Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
augmented inverse probability weighting; quantile regression; composite quantile regression; importance sampling; missing covariates; PROBABILITY WEIGHTED ESTIMATION; MISSING DATA; MEDIAN REGRESSION; LONGITUDINAL DATA; MODELS; INFERENCE;
D O I
10.1002/sam.11565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, missing data in regression model is one of the most well-known topics. In this paper, we propose a class of efficient importance sampling imputation algorithms (EIS) for quantile and composite quantile regression with missing covariates. They are an EIS in quantile regression (EISQ) and its three extensions in composite quantile regression (EISCQ). Our EISQ uses an interior point (IP) approach, while EISCQ algorithms use IP and other two well-known approaches: Majorize-minimization (MM) and coordinate descent (CD). The aims of our proposed EIS algorithms are to decrease estimated variances and relieve computational burden at the same time, which improves the performances of coefficients estimators in both estimated and computational efficiencies. To compare our EIS algorithms with other existing competitors including complete cases analysis and multiple imputation, the paper carries out a series of simulation studies with different sample sizes and different levels of missing rates under different missing mechanism models. Finally, we apply all the algorithms to part of the examination data in National Health and Nutrition Examination Survey.
引用
收藏
页码:339 / 356
页数:18
相关论文
共 50 条
  • [31] Composite hierachical linear quantile regression
    Yan-liang Chen
    Mao-zai Tian
    Ke-ming Yu
    Jian-xin Pan
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 49 - 64
  • [32] Risk Estimation With Composite Quantile Regression
    Christou, Eliana
    Grabchak, Michael
    ECONOMETRICS AND STATISTICS, 2025, 33 : 166 - 179
  • [33] Composite quantile regression for correlated data
    Zhao, Weihua
    Lian, Heng
    Song, Xinyuan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 109 : 15 - 33
  • [34] Regression Quantile and Averaged Regression Quantile Processes
    Jureckova, Jana
    ANALYTICAL METHODS IN STATISTICS, AMISTAT 2015, 2017, 193 : 53 - 62
  • [35] Efficient quantile regression for heteroscedastic models
    Jung, Yoonsuh
    Lee, Yoonkyung
    MacEachern, Steven N.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (13) : 2548 - 2568
  • [36] Efficient quantile regression with auxiliary information
    Müller, Ursula U.
    Van Keilegom, Ingrid
    Springer Proceedings in Mathematics and Statistics, 2014, 68 : 365 - 374
  • [37] Efficient Estimation for Censored Quantile Regression
    Lee, Sze Ming
    Sit, Tony
    Xu, Gongjun
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2762 - 2775
  • [38] Gibbs sampling methods for Bayesian quantile regression
    Kozumi, Hideo
    Kobayashi, Genya
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) : 1565 - 1578
  • [39] Communication-efficient sparse composite quantile regression for distributed data
    Yang, Yaohong
    Wang, Lei
    METRIKA, 2023, 86 (03) : 261 - 283
  • [40] Communication-efficient sparse composite quantile regression for distributed data
    Yaohong Yang
    Lei Wang
    Metrika, 2023, 86 : 261 - 283