Efficient importance sampling imputation algorithms for quantile and composite quantile regression

被引:0
|
作者
Cheng, Hao [1 ,2 ]
机构
[1] China Assoc Sci & Technol, Natl Acad Innovat Strategy, Fuxing Rd 3, Beijing, Peoples R China
[2] Renmin Univ China, Sch Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
augmented inverse probability weighting; quantile regression; composite quantile regression; importance sampling; missing covariates; PROBABILITY WEIGHTED ESTIMATION; MISSING DATA; MEDIAN REGRESSION; LONGITUDINAL DATA; MODELS; INFERENCE;
D O I
10.1002/sam.11565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, missing data in regression model is one of the most well-known topics. In this paper, we propose a class of efficient importance sampling imputation algorithms (EIS) for quantile and composite quantile regression with missing covariates. They are an EIS in quantile regression (EISQ) and its three extensions in composite quantile regression (EISCQ). Our EISQ uses an interior point (IP) approach, while EISCQ algorithms use IP and other two well-known approaches: Majorize-minimization (MM) and coordinate descent (CD). The aims of our proposed EIS algorithms are to decrease estimated variances and relieve computational burden at the same time, which improves the performances of coefficients estimators in both estimated and computational efficiencies. To compare our EIS algorithms with other existing competitors including complete cases analysis and multiple imputation, the paper carries out a series of simulation studies with different sample sizes and different levels of missing rates under different missing mechanism models. Finally, we apply all the algorithms to part of the examination data in National Health and Nutrition Examination Survey.
引用
收藏
页码:339 / 356
页数:18
相关论文
共 50 条
  • [21] Adaptive Importance Sampling for Efficient Stochastic Root Finding and Quantile Estimation
    He, Shengyi
    Jiang, Guangxin
    Lam, Henry
    Fu, Michael C.
    OPERATIONS RESEARCH, 2024, 72 (06) : 2612 - 2630
  • [22] Optimal portfolio selection using quantile and composite quantile regression models
    Aghamohammadi, A.
    Dadashi, H.
    Sojoudi, Mahdi
    Sojoudi, Meysam
    Tavoosi, M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (07) : 3047 - 3057
  • [23] Semiparametric Hierarchical Composite Quantile Regression
    Chen, Yanliang
    Tang, Man-Lai
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (05) : 996 - 1012
  • [24] Composite Hierachical Linear Quantile Regression
    Yanliang CHEN
    Maozai TIAN
    Keming YU
    Jianxin PAN
    Acta Mathematicae Applicatae Sinica(English Series), 2014, 30 (01) : 49 - 64
  • [25] A note on the efficiency of composite quantile regression
    Zhao, Kaifeng
    Lian, Heng
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (07) : 1334 - 1341
  • [26] Bayesian composite Tobit quantile regression
    Alhusseini, Fadel Hamid Hadi
    Georgescu, Vasile
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (04) : 727 - 739
  • [27] Bayesian Analysis of Composite Quantile Regression
    Alhamzawi R.
    Statistics in Biosciences, 2016, 8 (2) : 358 - 373
  • [28] Composite quantile regression for massive datasets
    Jiang, Rong
    Hu, Xueping
    Yu, Keming
    Qian, Weimin
    STATISTICS, 2018, 52 (05) : 980 - 1004
  • [29] Composite Hierachical Linear Quantile Regression
    Chen, Yan-liang
    Tian, Mao-zai
    Yu, Ke-ming
    Pan, Jian-xin
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (01): : 49 - 64
  • [30] Composite Hierachical Linear Quantile Regression
    Yan-liang CHEN
    Mao-zai TIAN
    Ke-ming YU
    Jian-xin PAN
    Acta Mathematicae Applicatae Sinica, 2014, (01) : 49 - 64