Localization in one-dimensional random random walks

被引:19
|
作者
Compte, A
Bouchaud, JP
机构
[1] Ctr Etud Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[2] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Catalonia, Spain
来源
关键词
D O I
10.1088/0305-4470/31/29/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Diffusion in a one-dimensional random force field leads to interesting localization effects, which we study using the equivalence with a directed walk model with traps. We show that although the average dispersion of positions <([x(2)] - [x](2))over bar> diverges for long times, the probability that two independent particles occupy the same site tends to a finite constant in the small bias phase of the model. Interestingly, the long-time properties of this off-equilibrium, ageing phase is similar to the equilibrium phase of the random energy model.
引用
下载
收藏
页码:6113 / 6121
页数:9
相关论文
共 50 条
  • [31] Complete visitation statistics of one-dimensional random walks
    Regnier, Leo
    Dolgushev, Maxim
    Redner, S.
    Benichou, Olivier
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [32] An invariance principle for one-dimensional random walks among dynamical random conductances
    Biskup, Marek
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [33] The quenched law of the iterated logarithm for one-dimensional random walks in a random environment
    Mao Mingzhi
    Liu Ting
    Forys, Urszula
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (01) : 52 - 60
  • [34] Slowdown estimates for one-dimensional random walks in random environment with holding times
    Dembo, Amir
    Fukushima, Ryoki
    Kubota, Naoki
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23 : 1 - 12
  • [35] An invariance principle for one-dimensional random walks in degenerate dynamical random environments
    Biskup, Marek
    Pan, Minghao
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [36] LIMIT BEHAVIOR OF RANDOM-WALKS IN ONE-DIMENSIONAL RANDOM-MEDIA
    SINEVA, IS
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1984, (04): : 5 - 12
  • [37] LOCALIZATION IN ONE-DIMENSIONAL RANDOM-SYSTEMS
    SINAI, JJ
    WONGTAWATNUGOOL, C
    WU, SY
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 418 - 418
  • [38] LOCALIZATION IN ONE-DIMENSIONAL CORRELATED RANDOM POTENTIALS
    JOHNSTON, R
    KRAMER, B
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1986, 63 (03): : 273 - 281
  • [39] LOCALIZATION LENGTH OF ONE-DIMENSIONAL RANDOM SYSTEMS
    PAPATRIANTAFILLOU, C
    PHYSICAL REVIEW B, 1977, 16 (06): : 2420 - 2423
  • [40] Simple transient random walks in one-dimensional random environment: the central limit theorem
    Goldsheid, Ilya Ya.
    PROBABILITY THEORY AND RELATED FIELDS, 2007, 139 (1-2) : 41 - 64