Complete visitation statistics of one-dimensional random walks

被引:5
|
作者
Regnier, Leo [1 ]
Dolgushev, Maxim [1 ]
Redner, S. [2 ]
Benichou, Olivier [1 ]
机构
[1] Sorbonne Univ, Lab Phys Theor Matiere Condensee, CNRS, 4 Pl Jussieu, F-75005 Paris, France
[2] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
关键词
NUMBER;
D O I
10.1103/PhysRevE.105.064104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a framework to determine the complete statistical behavior of a fundamental quantity in the theory of random walks, namely, the probability that n(1), n(2), n(3), ... distinct sites are visited at times t(1), t(2), t(3),... From this multiple-time distribution, we show that the visitation statistics of one-dimensional random walks are temporally correlated, and we quantify the non-Markovian nature of the process. We exploit these ideas to derive unexpected results for the two-time trapping problem and to determine the visitation statistics of two important stochastic processes, the run-and-tumble particle and the biased random walk.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Full-record statistics of one-dimensional random walks
    Regnier, Leo
    Dolgushev, Maxim
    Benichou, Olivier
    [J]. PHYSICAL REVIEW E, 2024, 109 (06)
  • [2] Joint statistics of space and time exploration of one-dimensional random walks
    Klinger, J.
    Barbier-Chebbah, A.
    Voituriez, R.
    Benichou, O.
    [J]. PHYSICAL REVIEW E, 2022, 105 (03)
  • [3] Localization in one-dimensional random random walks
    Compte, A
    Bouchaud, JP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (29): : 6113 - 6121
  • [4] Loops in one-dimensional random walks
    S. Wolfling
    Y. Kantor
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 12 : 569 - 577
  • [5] Loops in one-dimensional random walks
    Wolfling, S
    Kantor, Y
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1999, 12 (04): : 569 - 577
  • [6] Asymmetric one-dimensional random walks
    Antczak, Grazyna
    Ehrlich, Gert
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (12):
  • [7] One-dimensional branching random walks in a Markovian random environment
    Machado, FP
    Popov, SY
    [J]. JOURNAL OF APPLIED PROBABILITY, 2000, 37 (04) : 1157 - 1163
  • [8] PERSISTENT RANDOM-WALKS IN A ONE-DIMENSIONAL RANDOM ENVIRONMENT
    SZASZ, D
    TOTH, B
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 37 (1-2) : 27 - 38
  • [9] Systems of One-dimensional Random Walks in a Common Random Environment
    Peterson, Jonathon
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 1024 - 1040
  • [10] Martingale methods for random walks in a one-dimensional random environment
    Butov, AA
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1995, 39 (04) : 558 - 572