One-dimensional branching random walks in a Markovian random environment

被引:13
|
作者
Machado, FP
Popov, SY
机构
[1] Univ Sao Paulo, Inst Math & Stat, Dept Stat, BR-05508900 Sao Paulo, Brazil
[2] Russian Acad Sci, Inst Problems Informat Transmiss, Moscow 101447, Russia
关键词
branching random walk; random environment; strong transience; strong recurrence;
D O I
10.1017/S0021900200018350
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a one-dimensional supercritical branching random walk in a non-i.i.d. random environment, which considers both the branching mechanism and the step transition. This random environment is constructed using a recurrent Markov chain on a finite or countable state space. Criteria of (strong) recurrence and transience are presented for this model.
引用
收藏
页码:1157 / 1163
页数:7
相关论文
共 50 条
  • [1] PERSISTENT RANDOM-WALKS IN A ONE-DIMENSIONAL RANDOM ENVIRONMENT
    SZASZ, D
    TOTH, B
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 37 (1-2) : 27 - 38
  • [2] Systems of One-dimensional Random Walks in a Common Random Environment
    Peterson, Jonathon
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 1024 - 1040
  • [3] Martingale methods for random walks in a one-dimensional random environment
    Butov, AA
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1995, 39 (04) : 558 - 572
  • [4] Random Walks in a One-Dimensional L,vy Random Environment
    Bianchi, Alessandra
    Cristadoro, Giampaolo
    Lenci, Marco
    Ligabo, Marilena
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (01) : 22 - 40
  • [5] Random Walks in a One-Dimensional Lévy Random Environment
    Alessandra Bianchi
    Giampaolo Cristadoro
    Marco Lenci
    Marilena Ligabò
    [J]. Journal of Statistical Physics, 2016, 163 : 22 - 40
  • [6] LIMIT DISTRIBUTIONS FOR RANDOM-WALKS IN A ONE-DIMENSIONAL RANDOM ENVIRONMENT
    SINEVA, IS
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (01) : 241 - 242
  • [7] CURRENT FLUCTUATIONS OF A SYSTEM OF ONE-DIMENSIONAL RANDOM WALKS IN RANDOM ENVIRONMENT
    Peterson, Jonathon
    Seppaelaeinen, Timo
    [J]. ANNALS OF PROBABILITY, 2010, 38 (06): : 2258 - 2294
  • [8] Localization in one-dimensional random random walks
    Compte, A
    Bouchaud, JP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (29): : 6113 - 6121
  • [9] The quenched law of the iterated logarithm for one-dimensional random walks in a random environment
    Mao Mingzhi
    Liu Ting
    Forys, Urszula
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (01) : 52 - 60
  • [10] Slowdown estimates for one-dimensional random walks in random environment with holding times
    Dembo, Amir
    Fukushima, Ryoki
    Kubota, Naoki
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23 : 1 - 12