Localization in one-dimensional random random walks

被引:19
|
作者
Compte, A
Bouchaud, JP
机构
[1] Ctr Etud Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[2] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Catalonia, Spain
来源
关键词
D O I
10.1088/0305-4470/31/29/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Diffusion in a one-dimensional random force field leads to interesting localization effects, which we study using the equivalence with a directed walk model with traps. We show that although the average dispersion of positions <([x(2)] - [x](2))over bar> diverges for long times, the probability that two independent particles occupy the same site tends to a finite constant in the small bias phase of the model. Interestingly, the long-time properties of this off-equilibrium, ageing phase is similar to the equilibrium phase of the random energy model.
引用
收藏
页码:6113 / 6121
页数:9
相关论文
共 50 条
  • [41] Occupation time theorems for one-dimensional random walks and diffusion processes in random environments
    Kasahara, Yuji
    Watanabe, Shinzo
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (02) : 347 - 372
  • [42] Simple transient random walks in one-dimensional random environment: the central limit theorem
    Ilya Ya. Goldsheid
    [J]. Probability Theory and Related Fields, 2007, 139 : 41 - 64
  • [43] Computer Simulations for Some One-Dimensional Models of Random Walks in Fluctuating Random Environment
    C. Boldrighini
    G. Cosimi
    S. Frigio
    A. Pellegrinotti
    [J]. Journal of Statistical Physics, 2005, 121 : 361 - 372
  • [44] Computer simulations for some one-dimensional models of random walks in fluctuating random environment
    Boldrighini, C
    Cosimi, G
    Frigio, S
    Pellegrinotti, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (3-4) : 361 - 372
  • [45] A log-scale limit theorem for one-dimensional random walks in random environments
    Roitershtein, A
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2005, 10 : 244 - 253
  • [46] ONE-DIMENSIONAL RANDOM WALKS WITH SELF-BLOCKING IMMIGRATION
    Birkner, Matthias
    Sun, Rongfeng
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (01): : 109 - 139
  • [47] COMBINATORIAL FORMULAS FOR ONE-DIMENSIONAL GENERALIZED RANDOM-WALKS
    LEATH, PL
    DUXBURY, PM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (09): : 1435 - 1447
  • [48] Log-periodic modulation in one-dimensional random walks
    Padilla, L.
    Martin, H. O.
    Iguain, J. L.
    [J]. EPL, 2009, 85 (02)
  • [49] ONE-DIMENSIONAL RANDOM-WALKS ON A LATTICE WITH ENERGETIC DISORDER
    LEVITSKY, IA
    [J]. PHYSICAL REVIEW B, 1994, 49 (22) : 15594 - 15599
  • [50] Full-record statistics of one-dimensional random walks
    Regnier, Leo
    Dolgushev, Maxim
    Benichou, Olivier
    [J]. PHYSICAL REVIEW E, 2024, 109 (06)