Marginal quantile regression for varying coefficient models with longitudinal data

被引:3
|
作者
Zhao, Weihua [1 ]
Zhang, Weiping [2 ]
Lian, Heng [3 ]
机构
[1] Nantong Univ, Sch Sci, 9 Seyuan Rd, Nantong 226000, Peoples R China
[2] Univ Sci & Technol China, Dept Stat & Finance, 96 Jinzhai Rd, Hefei 230026, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon Tong, 83 Tat Chee Ave, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Longitudinal data; Quadratic inference function; Quantile regression; Varying coefficient model; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; LINEAR-MODELS; SHRINKAGE; SPLINES;
D O I
10.1007/s10463-018-0684-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the quantile varying coefficient model for longitudinal data, where the unknown nonparametric functions are approximated by polynomial splines and the estimators are obtained by minimizing the quadratic inference function. The theoretical properties of the resulting estimators are established, and they achieve the optimal convergence rate for the nonparametric functions. Since the objective function is non-smooth, an estimation procedure is proposed that uses induced smoothing and we prove that the smoothed estimator is asymptotically equivalent to the original estimator. Moreover, we propose a variable selection procedure based on the regularization method, which can simultaneously estimate and select important nonparametric components and has the asymptotic oracle property. Extensive simulations and a real data analysis show the usefulness of the proposed method.
引用
收藏
页码:213 / 234
页数:22
相关论文
共 50 条
  • [31] Quantile regression for partially linear varying coefficient spatial autoregressive models
    Dai, Xiaowen
    Li, Shaoyang
    Jin, Libin
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (09) : 4396 - 4411
  • [32] Varying-coefficient partially functional linear quantile regression models
    Ping Yu
    Jiang Du
    Zhongzhan Zhang
    Journal of the Korean Statistical Society, 2017, 46 : 462 - 475
  • [33] Varying-coefficient partially functional linear quantile regression models
    Yu, Ping
    Du, Jiang
    Zhang, Zhongzhan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (03) : 462 - 475
  • [34] P-splines quantile regression estimation in varying coefficient models
    Andriyana, Y.
    Gijbels, I.
    Verhasselt, A.
    TEST, 2014, 23 (01) : 153 - 194
  • [35] Quantile regression for robust inference on varying coefficient partially nonlinear models
    Yang, Jing
    Lu, Fang
    Yang, Hu
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2018, 47 (02) : 172 - 184
  • [36] Quantile regression for robust inference on varying coefficient partially nonlinear models
    Jing Yang
    Fang Lu
    Hu Yang
    Journal of the Korean Statistical Society, 2018, 47 : 172 - 184
  • [37] P-splines quantile regression estimation in varying coefficient models
    Y. Andriyana
    I. Gijbels
    A. Verhasselt
    TEST, 2014, 23 : 153 - 194
  • [38] Empirical likelihood for quantile regression models with longitudinal data
    Wang, Huixia Judy
    Zhu, Zhongyi
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1603 - 1615
  • [39] Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity
    Andriyana, Y.
    Gijbels, I.
    Verhasselt, A.
    STATISTICAL PAPERS, 2018, 59 (04) : 1589 - 1621
  • [40] Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity
    Y. Andriyana
    I. Gijbels
    A. Verhasselt
    Statistical Papers, 2018, 59 : 1589 - 1621