Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity

被引:16
|
作者
Andriyana, Y. [1 ,2 ,4 ]
Gijbels, I. [1 ,2 ]
Verhasselt, A. [3 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Leuven, Belgium
[2] Katholieke Univ Leuven, Leuven Stat Res LStat, Leuven, Belgium
[3] Univ Hasselt, Interuniv Inst Biostat & Stat Bioinformat, CenStat, Hasselt, Belgium
[4] Univ Padjadjaran, Fac Math & Nat Sci, Dept Stat, Bandung, Indonesia
关键词
B-splines; Crossing quantile curves; Longitudinal data; P-splines; Quantile regression; Quantile sheet; Variability; Varying-coefficient models; CENTILE CURVES; AIR-POLLUTION; ESTIMATORS; EFFICIENT; SELECTION; SPLINES; ERROR;
D O I
10.1007/s00362-016-0847-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression is an important tool for describing the characteristics of conditional distributions. Population conditional quantile functions cannot cross for different quantile orders. Unfortunately estimated regression quantile curves often violate this and cross each other, which can be very annoying for interpretations and further analysis. In this paper we are concerned with flexible varying-coefficient modelling, and develop methods for quantile regression that ensure that the estimated quantile curves do not cross. A second aim of the paper is to allow for some heteroscedasticity in the error modelling, and to also estimate the associated variability function. We investigate the finite-sample performances of the discussed methods via simulation studies. Some applications to real data illustrate the use of the methods in practical settings.
引用
下载
收藏
页码:1589 / 1621
页数:33
相关论文
共 50 条
  • [1] Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity
    Y. Andriyana
    I. Gijbels
    A. Verhasselt
    Statistical Papers, 2018, 59 : 1589 - 1621
  • [2] ESTIMATION OF NON-CROSSING QUANTILE REGRESSION CURVES
    Cai, Yuzhi
    Jiang, Tao
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2015, 57 (01) : 139 - 162
  • [3] Bayesian non-crossing quantile regression for regularly varying distributions
    El Adlouni, Salaheddine
    Balde, Ismaila
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (05) : 884 - 898
  • [4] Non-crossing convex quantile regression
    Dai, Sheng
    Kuosmanen, Timo
    Zhou, Xun
    ECONOMICS LETTERS, 2023, 233
  • [5] Quantile regression methods with varying-coefficient models for censored data
    Xie, Shangyu
    Wan, Alan T. K.
    Zhou, Yong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 88 : 154 - 172
  • [6] Varying-coefficient partially functional linear quantile regression models
    Yu, Ping
    Du, Jiang
    Zhang, Zhongzhan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (03) : 462 - 475
  • [7] Varying-coefficient partially functional linear quantile regression models
    Ping Yu
    Jiang Du
    Zhongzhan Zhang
    Journal of the Korean Statistical Society, 2017, 46 : 462 - 475
  • [8] Composite quantile regression for varying-coefficient single-index models
    Fan, Yan
    Tang, Manlai
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (10) : 3027 - 3047
  • [9] DGQR estimation for interval censored quantile regression with varying-coefficient models
    Li, ChunJing
    Li, Yun
    Ding, Xue
    Dong, XiaoGang
    PLOS ONE, 2020, 15 (11):
  • [10] Quantile regression in varying coefficient models
    Honda, T
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 121 (01) : 113 - 125