Machine Learning Self-Diffusion Prediction for Lennard-Jones Fluids in Pores

被引:21
|
作者
Leverant, Calen J. [1 ,2 ]
Harvey, Jacob A. [3 ]
Alam, Todd M. [4 ]
Greathouse, Jeffery A. [3 ]
机构
[1] Sandia Natl Labs, WMD Threats & Aerosol Sci Dept, Albuquerque, NM 87185 USA
[2] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA
[3] Sandia Natl Labs, Geochem Dept, Albuquerque, NM 87185 USA
[4] Sandia Natl Labs, Organ Mat Sci Dept, Albuquerque, NM 87185 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2021年 / 125卷 / 46期
关键词
NONELECTROLYTE ORGANIC-COMPOUNDS; REDOX FLOW BATTERY; TRANSPORT-COEFFICIENTS; MOLECULAR-DYNAMICS; PURE COMPOUNDS; MODEL; COEXISTENCE; SIMULATION; MECHANISM; SYSTEMS;
D O I
10.1021/acs.jpcc.1c08297
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Predicting the diffusion coefficient of fluids under nanoconfinement is important for many applications including the extraction of shale gas from kerogen and product turnover in porous catalysts. Due to the large number of important variables, including pore shape and size, fluid temperature and density, and the fluid-wall interaction strength, simulating diffusion coefficients using molecular dynamics (MD) in a systematic study could prove to be prohibitively expensive. Here, we use machine learning models trained on a subset of MD data to predict the self-diffusion coefficients of Lennard-Jones fluids in pores. Our MD data set contains 2280 simulations of ideal slit pore, cylindrical pore, and hexagonal pore geometries. We use the forward feature selection method to determine the most useful features (i.e., descriptors) for developing an artificial neutral network (ANN) model with an emphasis on easily acquired features. Our model shows good predictive ability with a coefficient of determination (i.e., R2) of -,0.99 and a mean squared error of -,2.9 x 10-5. Finally, we propose an alteration to our feature set that will allow the ANN model to be applied to nonideal pore geometries.
引用
收藏
页码:25898 / 25906
页数:9
相关论文
共 50 条
  • [1] Machine learning prediction of self-diffusion in Lennard-Jones fluids
    Allers, Joshua P.
    Harvey, Jacob A.
    Garzon, Fernando H.
    Alam, Todd M.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (03):
  • [2] SELF-DIFFUSION COEFFICIENTS OF LENNARD-JONES FLUIDS
    TANKESHWAR, K
    PATHAK, KN
    RANGANATHAN, S
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (34): : 5749 - 5757
  • [3] SELF-DIFFUSION IN A LENNARD-JONES FLUID
    DESAI, RC
    KAPRAL, R
    PHYSICAL REVIEW A, 1978, 17 (01): : 477 - 479
  • [4] ROLE OF ATTRACTIVE FORCES IN SELF-DIFFUSION IN DENSE LENNARD-JONES FLUIDS
    KUSHICK, J
    BERNE, BJ
    JOURNAL OF CHEMICAL PHYSICS, 1973, 59 (07): : 3732 - 3736
  • [5] Self-diffusion coefficients of the metastable Lennard-Jones vapor
    Nie, Chu
    Zhou, Youhua
    Marlow, W. H.
    Hassan, Y. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (41)
  • [6] Mean force kinetic theory applied to self-diffusion in supercritical Lennard-Jones fluids
    Scheiner, Brett
    Baalrud, Scott D.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (17):
  • [7] Molecular dynamics simulation data of self-diffusion coefficient for Lennard-Jones chain fluids
    Reis, RA
    Silva, FC
    Nobrega, R
    Oliveira, JV
    Tavares, FW
    FLUID PHASE EQUILIBRIA, 2004, 221 (1-2) : 25 - 33
  • [8] The self-diffusion coefficient in metastable states of a Lennard-Jones fluid
    Baidakov, V. G.
    Kozlova, Z. R.
    CHEMICAL PHYSICS LETTERS, 2010, 500 (1-3) : 23 - 27
  • [9] Self-diffusion for Lennard-Jones fluid confined in a nanoscale space
    Zhang, Chengbin
    Chen, Yongping
    Yang, Libo
    Shi, Mingheng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (21-22) : 4770 - 4773
  • [10] The self-diffusion coefficient in stable and metastable states of the Lennard-Jones fluid
    Baidakov, V. G.
    Protsenko, S. P.
    Kozlova, Z. R.
    FLUID PHASE EQUILIBRIA, 2011, 305 (02) : 106 - 113