Machine Learning Self-Diffusion Prediction for Lennard-Jones Fluids in Pores

被引:21
|
作者
Leverant, Calen J. [1 ,2 ]
Harvey, Jacob A. [3 ]
Alam, Todd M. [4 ]
Greathouse, Jeffery A. [3 ]
机构
[1] Sandia Natl Labs, WMD Threats & Aerosol Sci Dept, Albuquerque, NM 87185 USA
[2] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA
[3] Sandia Natl Labs, Geochem Dept, Albuquerque, NM 87185 USA
[4] Sandia Natl Labs, Organ Mat Sci Dept, Albuquerque, NM 87185 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2021年 / 125卷 / 46期
关键词
NONELECTROLYTE ORGANIC-COMPOUNDS; REDOX FLOW BATTERY; TRANSPORT-COEFFICIENTS; MOLECULAR-DYNAMICS; PURE COMPOUNDS; MODEL; COEXISTENCE; SIMULATION; MECHANISM; SYSTEMS;
D O I
10.1021/acs.jpcc.1c08297
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Predicting the diffusion coefficient of fluids under nanoconfinement is important for many applications including the extraction of shale gas from kerogen and product turnover in porous catalysts. Due to the large number of important variables, including pore shape and size, fluid temperature and density, and the fluid-wall interaction strength, simulating diffusion coefficients using molecular dynamics (MD) in a systematic study could prove to be prohibitively expensive. Here, we use machine learning models trained on a subset of MD data to predict the self-diffusion coefficients of Lennard-Jones fluids in pores. Our MD data set contains 2280 simulations of ideal slit pore, cylindrical pore, and hexagonal pore geometries. We use the forward feature selection method to determine the most useful features (i.e., descriptors) for developing an artificial neutral network (ANN) model with an emphasis on easily acquired features. Our model shows good predictive ability with a coefficient of determination (i.e., R2) of -,0.99 and a mean squared error of -,2.9 x 10-5. Finally, we propose an alteration to our feature set that will allow the ANN model to be applied to nonideal pore geometries.
引用
收藏
页码:25898 / 25906
页数:9
相关论文
共 50 条
  • [31] LENNARD-JONES FLUIDS IN CYLINDRICAL PORES - NONLOCAL THEORY AND COMPUTER-SIMULATION
    PETERSON, BK
    GUBBINS, KE
    HEFFELFINGER, GS
    MARCONI, UMB
    VANSWOL, F
    JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (10): : 6487 - 6500
  • [32] Investigation of Phase Behaviors for Associating Lennard-Jones Fluids Confined in Slit Pores
    Wu Huijie
    Li Xiaosen
    ACTA CHIMICA SINICA, 2010, 68 (17) : 1681 - 1686
  • [33] Investigation of Interfacial Properties for Associating Lennard-Jones Fluids Confined in Slit Pores
    Li Xiaosen
    Wu Huijie
    ACTA CHIMICA SINICA, 2011, 69 (04) : 363 - 367
  • [34] COMPARISON OF GREEN-KUBO AND NONEQUILIBRIUM CALCULATIONS OF THE SELF-DIFFUSION CONSTANT OF A LENNARD-JONES FLUID
    ERPENBECK, JJ
    PHYSICAL REVIEW A, 1987, 35 (01): : 218 - 232
  • [35] THE SHEAR VISCOSITY OF LENNARD-JONES FLUIDS
    TANKESHWAR, K
    PATHAK, KN
    RANGANATHAN, S
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (19): : 3607 - 3617
  • [36] Dependence on the thermodynamic state of self-diffusion of pseudo-hard-sphere and Lennard-Jones potentials
    Marchioni, L.
    Di Muro, M. A.
    Hoyuelos, M.
    PHYSICAL REVIEW E, 2023, 107 (01)
  • [37] MOLECULAR-DYNAMICS STUDY OF SELF-DIFFUSION IN A THIN-FILM LENNARD-JONES SYSTEM
    DASSARMA, S
    KHOR, KE
    PAIK, SM
    KIRKPATRICK, TR
    CHEMICAL PHYSICS LETTERS, 1985, 120 (01) : 97 - 100
  • [38] Lyapunov instabilities of Lennard-Jones fluids
    Yang, HL
    Radons, G
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [39] Pair correlation functions and the self-diffusion coefficient of Lennard-Jones liquid in the modified free volume theory of diffusion
    Laghaei, R
    Nasrabad, AE
    Eu, BC
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (45): : 21375 - 21379
  • [40] Diffusion Model of Lennard-Jones Fluids Based on the Radial Distribution Function
    Ji, Xiangfei
    JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (44): : 9008 - 9015