Machine Learning Self-Diffusion Prediction for Lennard-Jones Fluids in Pores

被引:21
|
作者
Leverant, Calen J. [1 ,2 ]
Harvey, Jacob A. [3 ]
Alam, Todd M. [4 ]
Greathouse, Jeffery A. [3 ]
机构
[1] Sandia Natl Labs, WMD Threats & Aerosol Sci Dept, Albuquerque, NM 87185 USA
[2] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA
[3] Sandia Natl Labs, Geochem Dept, Albuquerque, NM 87185 USA
[4] Sandia Natl Labs, Organ Mat Sci Dept, Albuquerque, NM 87185 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2021年 / 125卷 / 46期
关键词
NONELECTROLYTE ORGANIC-COMPOUNDS; REDOX FLOW BATTERY; TRANSPORT-COEFFICIENTS; MOLECULAR-DYNAMICS; PURE COMPOUNDS; MODEL; COEXISTENCE; SIMULATION; MECHANISM; SYSTEMS;
D O I
10.1021/acs.jpcc.1c08297
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Predicting the diffusion coefficient of fluids under nanoconfinement is important for many applications including the extraction of shale gas from kerogen and product turnover in porous catalysts. Due to the large number of important variables, including pore shape and size, fluid temperature and density, and the fluid-wall interaction strength, simulating diffusion coefficients using molecular dynamics (MD) in a systematic study could prove to be prohibitively expensive. Here, we use machine learning models trained on a subset of MD data to predict the self-diffusion coefficients of Lennard-Jones fluids in pores. Our MD data set contains 2280 simulations of ideal slit pore, cylindrical pore, and hexagonal pore geometries. We use the forward feature selection method to determine the most useful features (i.e., descriptors) for developing an artificial neutral network (ANN) model with an emphasis on easily acquired features. Our model shows good predictive ability with a coefficient of determination (i.e., R2) of -,0.99 and a mean squared error of -,2.9 x 10-5. Finally, we propose an alteration to our feature set that will allow the ANN model to be applied to nonideal pore geometries.
引用
收藏
页码:25898 / 25906
页数:9
相关论文
共 50 条
  • [21] Evaporation of Lennard-Jones fluids
    Cheng, Shengfeng
    Lechman, Jeremy B.
    Plimpton, Steven J.
    Grest, Gary S.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (22):
  • [22] LENNARD-JONES FLUIDS IN CAVITIES
    BUG, ALR
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1989, 10 (02) : 469 - 478
  • [23] LENNARD-JONES MIXTURES IN CYLINDRICAL PORES
    TAN, ZM
    VANSWOL, F
    GUBBINS, KE
    MOLECULAR PHYSICS, 1987, 62 (05) : 1213 - 1224
  • [24] Effect of the computational domain size and shape on the self-diffusion coefficient in a Lennard-Jones liquid
    Kikugawa, Gota
    Ando, Shotaro
    Suzuki, Jo
    Naruke, Yoichi
    Nakano, Takeo
    Ohara, Taku
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (02):
  • [25] A molecular dynamics simulation study of the self-diffusion coefficient and viscosity of the Lennard-Jones fluid
    Meier, K
    Laesecke, A
    Kabelac, S
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2001, 22 (01) : 161 - 173
  • [26] SELF-DIFFUSION ON THE LENNARD-JONES FCC(111) SURFACE - EFFECTS OF TEMPERATURE ON DYNAMICAL CORRECTIONS
    COHEN, JM
    VOTER, AF
    JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (08): : 5082 - 5086
  • [27] Molecular dynamics simulation of solute diffusion in Lennard-Jones fluids
    Yamaguchi, T
    Kimura, Y
    Hirota, N
    MOLECULAR PHYSICS, 1998, 94 (03) : 527 - 537
  • [28] Critical properties of Lennard-Jones fluids in narrow slit-shaped pores
    Vishnyakov, A
    Piotrovskaya, EM
    Brodskaya, EN
    Votyakov, EV
    Tovbin, YK
    LANGMUIR, 2001, 17 (14) : 4451 - 4458
  • [29] Population Inversion, Selective Adsorption, and Demixing of Lennard-Jones Fluids in Nanospherical Pores
    Keshavarzi, Ezat
    Helmi, Abbas
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (17): : 4582 - 4589
  • [30] PREDICTION OF THE LENNARD-JONES PARAMETERS FOR NON POLAR POLYATOMIC FLUIDS
    GOSSE, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1986, 303 (07): : 535 - 538