Molecular dynamics simulation data of self-diffusion coefficient for Lennard-Jones chain fluids

被引:23
|
作者
Reis, RA
Silva, FC
Nobrega, R
Oliveira, JV
Tavares, FW
机构
[1] Univ Fed Rio de Janeiro, COPPE, Ctr Technol, Programa Engn Quim, BR-21945 Rio De Janeiro, Brazil
[2] Ctr Technol, Inst Quim, Dept Quim Fis, BR-21945 Rio De Janeiro, Brazil
[3] URI, Dept Engn Alimentos, BR-99700000 Erechim, RS, Brazil
[4] Univ Fed Rio de Janeiro, EQ, BR-21949900 Rio De Janeiro, Brazil
关键词
self-diffusion coefficient; molecular dynamics simulation; Lennard-Jones potential; Lennard-Jones chain; Chapman-Enskog model;
D O I
10.1016/j.fluid.2004.04.007
中图分类号
O414.1 [热力学];
学科分类号
摘要
The knowledge of the diffusion coefficient of a molecule in dense fluids at a given density and temperature plays an important role in many chemical processes. Molecular dynamics (MD) simulation has been recognized as a useful tool to provide exact results of theoretical models, thus affording a database for the development of empirical models that can be readily accessible for engineering purposes. The aim of this work is to provide self-diffusion coefficient data from MD simulation for freely jointed Lennard-Jones (LJ) chain fluids of lengths 2, 4, 8, and 16 at the reduced densities ranging from 0.1 to 0.9 and at the reduced temperature interval of 1.5-4. Based on both Chapman-Enskog formalism and MD simulation data, we propose an equation to calculate self-diffusion coefficients of polyatomic fluids. The new model represents the self-diffusion coefficients with an absolute average deviation (AAD) of 15.3%. (C) 2004 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:25 / 33
页数:9
相关论文
共 50 条
  • [1] A molecular dynamics simulation study of the self-diffusion coefficient and viscosity of the Lennard-Jones fluid
    Meier, K
    Laesecke, A
    Kabelac, S
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2001, 22 (01) : 161 - 173
  • [2] Temperature and density dependence of the self-diffusion coefficient and Mori coefficients of Lennard-Jones fluids by molecular dynamics simulation
    Nuevo, MJ
    Morales, JJ
    Heyes, DM
    PHYSICAL REVIEW E, 1997, 55 (04): : 4217 - 4224
  • [3] SELF-DIFFUSION COEFFICIENTS OF LENNARD-JONES FLUIDS
    TANKESHWAR, K
    PATHAK, KN
    RANGANATHAN, S
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (34): : 5749 - 5757
  • [4] Molecular dynamics simulation of solute diffusion in Lennard-Jones fluids
    Yamaguchi, T
    Kimura, Y
    Hirota, N
    MOLECULAR PHYSICS, 1998, 94 (03) : 527 - 537
  • [5] Molecular Dynamics Simulation of Self-Diffusion Coefficient and Its Relation with Temperature Using Simple Lennard-Jones Potential
    Li Wei-Zhong
    Chen Cong
    Yang Jian
    HEAT TRANSFER-ASIAN RESEARCH, 2008, 37 (02): : 86 - 93
  • [6] A new formula of predicting self-diffusion coefficient of lennard-jones chain fluid
    He, Maogang
    Guo, Ying
    Zhong, Qiu
    Zhang, Ying
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2009, 43 (09): : 1 - 4
  • [7] A Molecular Dynamics Simulation Study of the Self-Diffusion Coefficient and Viscosity of the Lennard–Jones Fluid
    K. Meier
    A. Laesecke
    S. Kabelac
    International Journal of Thermophysics, 2001, 22 : 161 - 173
  • [8] The self-diffusion coefficient in metastable states of a Lennard-Jones fluid
    Baidakov, V. G.
    Kozlova, Z. R.
    CHEMICAL PHYSICS LETTERS, 2010, 500 (1-3) : 23 - 27
  • [9] Machine learning prediction of self-diffusion in Lennard-Jones fluids
    Allers, Joshua P.
    Harvey, Jacob A.
    Garzon, Fernando H.
    Alam, Todd M.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (03):
  • [10] AN EQUATION OF STATE FOR THE SELF-DIFFUSION COEFFICIENT IN LENNARD-JONES FLUID DERIVED BY MOLECULAR-DYNAMICS SIMULATIONS
    KATAOKA, Y
    FUJITA, M
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1995, 68 (01) : 152 - 159