THE SCHUR CONVEXITY FOR THE GENERALIZED MUIRHEAD MEAN

被引:6
|
作者
Gong, Wei-Ming [1 ]
Sun, Hui [1 ]
Chu, Yu-Ming [1 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
来源
关键词
Generalized Muirhead mean; Schur convexity; Schur concavity; SYMMETRIC FUNCTION;
D O I
10.7153/jmi-08-64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For x, y > 0, a, b is an element of R with a+ b not equal 0, the generalized Muirhead mean is defined by M( a, b; x, y) = (x(a)y(b) + x(b)y(a)/2) . In this paper, we prove that M( a, b; x, y) is Schur convex with respect to ( x, y) is an element of ( 0,infinity) x( 0,infinity) if and only if ( a, b) is an element of{( a, b)is an element of R-2 : ( a- b) (2) >= a+ b > 0& ab <= 0} and Schur concave with respect to ( x, y). ( 0,infinity) x( 0,infinity) if and only if ( a, b)is an element of{( a, b)is an element of R-2 + : ( a- b)(2) not equal a+ b & ( a, b) = ( 0,0)}.{( a, b). R2 : a+ b < 0}, where R+ : = [ 0,8)
引用
收藏
页码:855 / 862
页数:8
相关论文
共 50 条
  • [41] Schur convexity and Schur multiplicative convexity for a class of symmetric functions with applications
    Wei-Feng Xia
    Yu-Ming Chu
    Ukrainian Mathematical Journal, 2009, 61 : 1541 - 1555
  • [42] Convexity properties of generalized mean value functions
    Beckenbach, EF
    ANNALS OF MATHEMATICAL STATISTICS, 1942, 13 : 88 - 90
  • [43] SCHUR CONVEXITY AND SCHUR MULTIPLICATIVE CONVEXITY FOR A CLASS OF SYMMETRIC FUNCTIONS WITH APPLICATIONS
    Xia, Wei-Feng
    Chu, Yu-Ming
    UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (10) : 1541 - 1555
  • [44] SCHUR M-POWER CONVEXITY OF GENERALIZED HAMY SYMMETRIC FUNCTION
    Wang, Wen
    Yang, Shiguo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (03): : 661 - 667
  • [45] INEQUALITIES OF KARAMATA, SCHUR AND MUIRHEAD, AND SOME APPLICATIONS
    Kadelburg, Zoran
    Dukic, Dusan
    Lukic, Milivoje
    Matic, Ivan
    TEACHING OF MATHEMATICS, 2005, 8 (01): : 31 - 45
  • [46] Schur-m power convexity for a mean of two variables with three parameters
    Wang, Dongsheng
    Fu, Chun-Ru
    Shi, Huan-Nan
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2298 - 2304
  • [47] NECESSARY AND SUFFICIENT CONDITIONS FOR THE SCHUR HARMONIC CONVEXITY OR CONCAVITY OF THE EXTENDED MEAN VALUES
    Xia, Wei-Feng
    Chu, Yu-Ming
    Wang, Gen-Di
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2011, 52 (01): : 121 - 132
  • [48] ON SCHUR-CONVEXITY AND SCHUR-GEOMETRIC CONVEXITY OF FOUR-PARAMETER FAMILY OF
    Witkowski, Alfred
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (04): : 897 - 903
  • [49] SCHUR-CONVEXITY OF THE GENERALIZED HERONIAN MEANS INVOLVING TWO POSITIVE NUMBERS
    Fu, Li-Li
    Xi, Bo-Yan
    Srivastava, H. M.
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (06): : 2721 - 2731
  • [50] Schur-convexity, Schur-geometric and Schur-harmonic convexity for a composite function of complete symmetric function
    Shi, Huan-Nan
    Zhang, Jing
    Ma, Qing-Hua
    SPRINGERPLUS, 2016, 5