NECESSARY AND SUFFICIENT CONDITIONS FOR THE SCHUR HARMONIC CONVEXITY OR CONCAVITY OF THE EXTENDED MEAN VALUES

被引:0
|
作者
Xia, Wei-Feng [2 ]
Chu, Yu-Ming [1 ]
Wang, Gen-Di [1 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
[2] Huzhou Teachers Coll, Sch Teacher Educ, Huzhou 313000, Peoples R China
来源
关键词
extended mean value; Schur-convex; Schur harmonic convex; HEISENBERG-GROUP; INEQUALITIES; MANIFOLDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the extended values E(r, s; x, y) are Schur harmonic convex (or concave, respectively) with respect to (x, y) is an element of (0, infinity) x (0, infinity) if and only if (r, s) is an element of {(r, s) : s >= 1,s >= r, s + r + 3 >= 0} boolean OR {(r, s) : r >= -1, r >= s, s + r + 3 >= 0} (or {(r, s) : s <= -1, r <= -1, s + r + 3 <= 0}, respectively).
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [1] Necessary and sufficient conditions on the Schur convexity of a bivariate mean
    Yin, Hong-Ping
    Liu, Xi-Min
    Wang, Jing-Yu
    Guo, Bai-Ni
    AIMS MATHEMATICS, 2021, 6 (01): : 296 - 303
  • [2] Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave
    Chu, Yuming
    Zhang, Xiaoming
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2008, 48 (01): : 229 - 238
  • [3] The Schur Geometrical Convexity of the Extended Mean Values
    Chu Yuming
    Zhang Xiaoming
    Wang Gendi
    JOURNAL OF CONVEX ANALYSIS, 2008, 15 (04) : 707 - 718
  • [4] THE SCHUR CONVEXITY OF GINI MEAN VALUES IN THE SENSE OF HARMONIC MEAN
    夏卫锋
    褚玉明
    Acta Mathematica Scientia, 2011, 31 (03) : 1103 - 1112
  • [5] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    CHU YuMing1 & XIA WeiFeng2 1 Department of Mathematics
    Science China Mathematics, 2009, (10) : 2099 - 2106
  • [6] Necessary and sufficient conditions of Schur m-power convexity of a new mixed mean
    Xi, Bo-Yan
    Qi, Feng
    FILOMAT, 2024, 38 (19) : 6937 - 6944
  • [7] THE SCHUR CONVEXITY OF GINI MEAN VALUES IN THE SENSE OF HARMONIC MEAN
    Xia Weifeng
    Chu Yuming
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (03) : 1103 - 1112
  • [8] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    YuMing Chu
    WeiFeng Xia
    Science in China Series A: Mathematics, 2009, 52 : 2099 - 2106
  • [9] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    Chu YuMing
    Xia WeiFeng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (10): : 2099 - 2106
  • [10] A note on Schur-convexity of extended mean values
    Qi, F
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (05) : 1787 - 1793