THE SCHUR CONVEXITY FOR THE GENERALIZED MUIRHEAD MEAN

被引:6
|
作者
Gong, Wei-Ming [1 ]
Sun, Hui [1 ]
Chu, Yu-Ming [1 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
来源
关键词
Generalized Muirhead mean; Schur convexity; Schur concavity; SYMMETRIC FUNCTION;
D O I
10.7153/jmi-08-64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For x, y > 0, a, b is an element of R with a+ b not equal 0, the generalized Muirhead mean is defined by M( a, b; x, y) = (x(a)y(b) + x(b)y(a)/2) . In this paper, we prove that M( a, b; x, y) is Schur convex with respect to ( x, y) is an element of ( 0,infinity) x( 0,infinity) if and only if ( a, b) is an element of{( a, b)is an element of R-2 : ( a- b) (2) >= a+ b > 0& ab <= 0} and Schur concave with respect to ( x, y). ( 0,infinity) x( 0,infinity) if and only if ( a, b)is an element of{( a, b)is an element of R-2 + : ( a- b)(2) not equal a+ b & ( a, b) = ( 0,0)}.{( a, b). R2 : a+ b < 0}, where R+ : = [ 0,8)
引用
收藏
页码:855 / 862
页数:8
相关论文
共 50 条
  • [31] Schur convexity for the ratios of the Hamy and generalized Hamy symmetric functions
    Wei-Mao Qian
    Journal of Inequalities and Applications, 2011
  • [32] Schur convexity for the ratios of the Hamy and generalized Hamy symmetric functions
    Qian, Wei-Mao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [33] Schur Convexity of Generalized Heronian Means Involving Two Parameters
    Huan-Nan Shi
    Mihály Bencze
    Shan-He Wu
    Da-Mao Li
    Journal of Inequalities and Applications, 2008
  • [34] Schur Convexity of Generalized Heronian Means Involving Two Parameters
    Shi, Huan-Nan
    Bencze, Mihaly
    Wu, Shan-He
    Li, Da-Mao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
  • [35] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    CHU YuMing1 & XIA WeiFeng2 1 Department of Mathematics
    Science China Mathematics, 2009, (10) : 2099 - 2106
  • [36] Schur-power convexity of integral mean for convex functions on the coordinates
    Shi, Huannan
    Zhang, Jing
    OPEN MATHEMATICS, 2023, 21 (01):
  • [37] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    YuMing Chu
    WeiFeng Xia
    Science in China Series A: Mathematics, 2009, 52 : 2099 - 2106
  • [38] Solution of an open problem for Schur convexity or concavity of the Gini mean values
    Chu YuMing
    Xia WeiFeng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (10): : 2099 - 2106
  • [39] Schur Convexity of Mixed Mean of n Variables Involving Three Parameters
    Wang, Dong-Sheng
    Shi, Huan-Nan
    Fu, Chun-Ru
    FILOMAT, 2020, 34 (11) : 3663 - 3674
  • [40] Convexity properties of generalized mean value functions
    Norris, N
    ANNALS OF MATHEMATICAL STATISTICS, 1937, 8 : 118 - 120