Convergence of an iterative algorithm for solving Hamilton-Jacobi type equations

被引:0
|
作者
Markman, J [1 ]
Katz, IN [1 ]
机构
[1] Washington Univ, Dept Syst Sci & Math, St Louis, MO 63130 USA
关键词
Hamilton-Jacobi equations; convergence; optimal control;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solutions of the optimal control and H-infinity-control problems for nonlinear affine systems can be found by solving Hamilton-Jacobi equations. However, these first order nonlinear partial differential equations can, in general, not be solved analytically. This paper studies the rate of convergence of an iterative algorithm which solves these equations numerically for points near the origin. It is shown that the procedure converges to the stabilizing solution exponentially with respect to the iteration variable. Illustrative examples are presented which confirm the theoretical rate of convergence.
引用
收藏
页码:77 / 103
页数:27
相关论文
共 50 条
  • [21] Systems of Hamilton-Jacobi equations
    Cambronero, Julio
    Perez Alvarez, Javier
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (04) : 650 - 658
  • [22] Relaxation of Hamilton-Jacobi equations
    Ishii, H
    Loreti, P
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (04) : 265 - 304
  • [23] Externality and Hamilton-Jacobi equations
    Loreti, P
    Caffarelli, GV
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (02): : 123 - 136
  • [24] Externality and Hamilton-Jacobi equations
    Paola Loreti
    Giorgio Vergara Caffarelli
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 123 - 136
  • [25] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [26] Systems of Hamilton-Jacobi equations
    Julio Cambronero
    Javier Pérez Álvarez
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 650 - 658
  • [27] Relaxation of Hamilton-Jacobi Equations
    Hitoshi Ishii
    Paola Loreti
    Archive for Rational Mechanics and Analysis, 2003, 169 : 265 - 304
  • [28] On vectorial Hamilton-Jacobi equations
    Imbert, C
    Volle, M
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 493 - 506
  • [29] Global subanalytic solutions of Hamilton-Jacobi type equations
    Trélat, E
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (03): : 363 - 387
  • [30] Representation Formulas for Contact Type Hamilton-Jacobi Equations
    Hong, Jiahui
    Cheng, Wei
    Hu, Shengqing
    Zhao, Kai
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (03) : 2315 - 2327