Relaxation of Hamilton-Jacobi equations

被引:4
|
作者
Ishii, H
Loreti, P
机构
[1] Waseda Univ, Sch Educ, Dept Math, Shinjuku Ku, Tokyo 1698050, Japan
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
关键词
D O I
10.1007/s00205-003-0268-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the relaxation of Hamilton-Jacobi equations. The relaxation in our terminology is the following phenomenon: the pointwise supremum over a certain collection of subsolutions, in the almost everywhere sense, of a Hamilton-Jacobi equation yields a viscosity solution of the ``convexified'' Hamilton-Jacobi equation. This phenomenon has recently been observed in [13] in eikonal equations. We show in this paper that this relaxation is a common phenomenon for a wide range of Hamilton-Jacobi equations.
引用
收藏
页码:265 / 304
页数:40
相关论文
共 50 条
  • [1] Relaxation of Hamilton-Jacobi Equations
    Hitoshi Ishii
    Paola Loreti
    Archive for Rational Mechanics and Analysis, 2003, 169 : 265 - 304
  • [2] A RELAXATION RESULT FOR A CLASS OF DEGENERATE HAMILTON-JACOBI EQUATIONS
    Camilli, Fabio
    Pignotti, Cristina
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2005, 18 (04) : 419 - 430
  • [3] Systems of Hamilton-Jacobi equations
    Cambronero, Julio
    Perez Alvarez, Javier
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (04) : 650 - 658
  • [4] Externality and Hamilton-Jacobi equations
    Paola Loreti
    Giorgio Vergara Caffarelli
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 123 - 136
  • [5] Externality and Hamilton-Jacobi equations
    Loreti, P
    Caffarelli, GV
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (02): : 123 - 136
  • [6] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [7] Systems of Hamilton-Jacobi equations
    Julio Cambronero
    Javier Pérez Álvarez
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 650 - 658
  • [8] On vectorial Hamilton-Jacobi equations
    Imbert, C
    Volle, M
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 493 - 506
  • [9] NONCONVEX COERCIVE HAMILTON-JACOBI EQUATIONS: GUERAND'S RELAXATION REVISITED
    Forcadel, Nicolas
    Imbert, Cyril
    Monneau, Regis
    PURE AND APPLIED ANALYSIS, 2024, 6 (04):
  • [10] Non-oscillatory methods for relaxation approximation of Hamilton-Jacobi equations
    Banda, Mapundi
    Seaid, Mohammed
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (01) : 170 - 183