Non-oscillatory methods for relaxation approximation of Hamilton-Jacobi equations

被引:2
|
作者
Banda, Mapundi
Seaid, Mohammed
机构
[1] Univ KwaZulu Natal, Sch Math Sci, ZA-3209 Scottsville, South Africa
[2] Tech Univ Kaiserslautern, Fachbereich Math, D-67663 Kaiserslautern, Germany
关键词
Hamilton-Jacobi equations; relaxation approximation; non-oscillatory schemes; WENO reconstruction; implicit-explicit methods;
D O I
10.1016/j.amc.2006.05.066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a class of high order non-oscillatory methods based on relaxation approximation for solving Hamilton-Jacobi equations is presented. The relaxation approximation transforms the nonlinear weakly hyperbolic equations to a semilinear strongly hyperbolic system with linear characteristic speeds and stiff source terms. The main ideas are to apply the weighted essentially non-oscillatory (WENO) reconstruction for the spatial discretization and an implicit-explicit method for the temporal integration. To illustrate the performance of the method, numerical results are carried out on several test problems for the two-dimensional Hamilton-Jacobi equations with both convex and nonconvex Hamiltonians. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:170 / 183
页数:14
相关论文
共 50 条
  • [1] Relaxation of Hamilton-Jacobi equations
    Ishii, H
    Loreti, P
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (04) : 265 - 304
  • [2] Relaxation of Hamilton-Jacobi Equations
    Hitoshi Ishii
    Paola Loreti
    Archive for Rational Mechanics and Analysis, 2003, 169 : 265 - 304
  • [3] Construction of Convergent Adaptive Weighted Essentially Non-Oscillatory Schemes for Hamilton-Jacobi Equations on Triangular Meshes
    Kim, Kwangil
    Hong, Unhyok
    Ri, Kwanhung
    Yu, Juhyon
    APPLICATIONS OF MATHEMATICS, 2021, 66 (04) : 599 - 617
  • [4] Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes
    Kwangil Kim
    Unhyok Hong
    Kwanhung Ri
    Juhyon Yu
    Applications of Mathematics, 2021, 66 : 599 - 617
  • [5] A Sixth-Order Weighted Essentially Non-oscillatory Schemes Based on Exponential Polynomials for Hamilton-Jacobi Equations
    Ha, Youngsoo
    Kim, Chang Ho
    Yang, Hyoseon
    Yoon, Jungho
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (03) : 1675 - 1700
  • [6] Splitting methods for Hamilton-Jacobi equations
    Tourin, A
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (02) : 381 - 396
  • [7] REGULARITY FOR HAMILTON-JACOBI EQUATIONS VIA APPROXIMATION
    HONG, BI
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1995, 51 (02) : 195 - 213
  • [8] Adjoint methods for static Hamilton-Jacobi equations
    Hung Vinh Tran
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 41 (3-4) : 301 - 319
  • [9] Homogenization of Hamilton-Jacobi equations: Numerical methods
    Achdou, Yves
    Camilli, Fabio
    Dolcetta, Italo Capuzzo
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (07): : 1115 - 1143
  • [10] Approximation of solutions of Hamilton-Jacobi equations on the Heisenberg group
    Achdou, Yves
    Capuzzo-Dolcetta, Italo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (04): : 565 - 591