Non-oscillatory methods for relaxation approximation of Hamilton-Jacobi equations

被引:2
|
作者
Banda, Mapundi
Seaid, Mohammed
机构
[1] Univ KwaZulu Natal, Sch Math Sci, ZA-3209 Scottsville, South Africa
[2] Tech Univ Kaiserslautern, Fachbereich Math, D-67663 Kaiserslautern, Germany
关键词
Hamilton-Jacobi equations; relaxation approximation; non-oscillatory schemes; WENO reconstruction; implicit-explicit methods;
D O I
10.1016/j.amc.2006.05.066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a class of high order non-oscillatory methods based on relaxation approximation for solving Hamilton-Jacobi equations is presented. The relaxation approximation transforms the nonlinear weakly hyperbolic equations to a semilinear strongly hyperbolic system with linear characteristic speeds and stiff source terms. The main ideas are to apply the weighted essentially non-oscillatory (WENO) reconstruction for the spatial discretization and an implicit-explicit method for the temporal integration. To illustrate the performance of the method, numerical results are carried out on several test problems for the two-dimensional Hamilton-Jacobi equations with both convex and nonconvex Hamiltonians. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:170 / 183
页数:14
相关论文
共 50 条
  • [31] Externality and Hamilton-Jacobi equations
    Loreti, P
    Caffarelli, GV
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (02): : 123 - 136
  • [32] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [33] Systems of Hamilton-Jacobi equations
    Julio Cambronero
    Javier Pérez Álvarez
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 650 - 658
  • [34] On vectorial Hamilton-Jacobi equations
    Imbert, C
    Volle, M
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 493 - 506
  • [35] Symmetrical weighted essentially non-oscillatory-flux limiter schemes for Hamilton-Jacobi equations
    Abedian, Rooholah
    Adibi, Hojatollah
    Dehghan, Mehdi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (18) : 4710 - 4728
  • [36] Analytical Approximation Methods for the Stabilizing Solution of the Hamilton-Jacobi Equation
    Sakamoto, Noboru
    van der Schaft, Arjan J.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (10) : 2335 - 2350
  • [37] A new approximation for effective Hamiltonians for homogenization of a class of Hamilton-Jacobi equations
    Luo, Songting
    Yu, Yifeng
    Zhao, Hongkai
    Multiscale Modeling and Simulation, 2011, 9 (02): : 711 - 734
  • [38] Numerical approximation of the maximal solutions for a class of degenerate Hamilton-Jacobi equations
    Camilli, F
    Grüne, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) : 1540 - 1560
  • [39] A NEW APPROXIMATION FOR EFFECTIVE HAMILTONIANS FOR HOMOGENIZATION OF A CLASS OF HAMILTON-JACOBI EQUATIONS
    Luo, Songting
    Yu, Yifeng
    Zhao, Hongkai
    MULTISCALE MODELING & SIMULATION, 2011, 9 (02): : 711 - 734
  • [40] Implicit Difference Methods for Hamilton-Jacobi Functional Differential Equations
    Kamont, Z.
    Czernous, W.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2009, 2 (01) : 46 - 57