Relaxation of Hamilton-Jacobi equations

被引:4
|
作者
Ishii, H
Loreti, P
机构
[1] Waseda Univ, Sch Educ, Dept Math, Shinjuku Ku, Tokyo 1698050, Japan
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
关键词
D O I
10.1007/s00205-003-0268-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the relaxation of Hamilton-Jacobi equations. The relaxation in our terminology is the following phenomenon: the pointwise supremum over a certain collection of subsolutions, in the almost everywhere sense, of a Hamilton-Jacobi equation yields a viscosity solution of the ``convexified'' Hamilton-Jacobi equation. This phenomenon has recently been observed in [13] in eikonal equations. We show in this paper that this relaxation is a common phenomenon for a wide range of Hamilton-Jacobi equations.
引用
收藏
页码:265 / 304
页数:40
相关论文
共 50 条
  • [21] HAMILTON-JACOBI EQUATIONS WITH STATE CONSTRAINTS
    CAPUZZODOLCETTA, I
    LIONS, PL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 318 (02) : 643 - 683
  • [22] Singularities of solutions of Hamilton-Jacobi equations
    Cannarsa, Piermarco
    Cheng, Wei
    arXiv, 2021,
  • [23] On shock generation for Hamilton-Jacobi equations
    Stromberg, Thomas
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (04): : 619 - 629
  • [24] HAMILTON-JACOBI EQUATIONS ON AN EVOLVING SURFACE
    Deckelnick, Klaus
    Elliott, Charles M.
    Miura, Tatsu-Hiko
    Styles, Vanessa
    MATHEMATICS OF COMPUTATION, 2019, 88 (320) : 2635 - 2664
  • [25] Homogenization for stochastic Hamilton-Jacobi equations
    Rezakhanlou, F
    Tarver, JE
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 151 (04) : 277 - 309
  • [26] Symplectic topology and Hamilton-Jacobi equations
    Viterbo, C
    Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, 2006, 217 : 439 - 459
  • [27] Parabolic perturbations of Hamilton-Jacobi equations
    Sinai, Y
    FUNDAMENTA MATHEMATICAE, 1998, 157 (2-3) : 299 - 303
  • [28] On the extension of the solutions of Hamilton-Jacobi equations
    Albano, Paolo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1421 - 1425
  • [29] Representations of solutions of Hamilton-Jacobi equations
    Dolcetta, IC
    NONLINEAR EQUATIONS: METHODS, MODELS AND APPLICATIONS, 2003, 54 : 79 - 90
  • [30] The relaxing schemes for Hamilton-Jacobi equations
    Tang, HZ
    Wu, HM
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (03) : 231 - 240