Global subanalytic solutions of Hamilton-Jacobi type equations

被引:19
|
作者
Trélat, E [1 ]
机构
[1] Univ Paris Sud, Labo AN EDP Math, UMR 8628, F-91405 Orsay, France
关键词
Hamilton-Jacobi equation; value function; viscosity solution; subanalytic sets;
D O I
10.1016/j.anihpc.2005.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the 80's, Crandall and Lions introduced the concept of viscosity solution, in order to get existence and/or uniqueness results for Hamilton-Jacobi equations. In this work, we first investigate the Dirichlet and Cauchy-Dirichlet problems for such equations, where the Hamiltonian is associated to a problem of calculus of variations. and prove that, if the data are analytic, then the viscosity solution is moreover subanalytic. We then extend this result to Hamilton-Jacobi equations stemming from optimal control problems, in particular from sub-Riemannian geometry, which are generalized eikonal equations. As a consequence, the set of singularities of the viscosity solutions of such Hamilton-Jacobi equations is a subanalytic stratified manifold of codimension greater than or equal to one. (c) 2005 Elsevier SAS. All rights reserved.
引用
收藏
页码:363 / 387
页数:25
相关论文
共 50 条
  • [1] Global subanalytic solutions of Hamilton-Jacobi type equations.
    Trélat, E
    [J]. COMPTES RENDUS MATHEMATIQUE, 2003, 337 (10) : 653 - 656
  • [2] Global geometrical solutions for Hamilton-Jacobi equations of evolution type
    Cardin, F
    [J]. WASCOM 2001: 11TH CONFERENCE ON WAVES AND STABILITY IN CONTINUOUS MEDIA, PROEEDINGS, 2002, : 124 - 129
  • [3] Global solutions of inhomogeneous Hamilton-Jacobi equations
    Souplet, Philippe
    Zhang, Qi S.
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2006, 99 (1): : 355 - 396
  • [4] On global discontinuous solutions of Hamilton-Jacobi equations
    Chen, GQ
    Su, B
    [J]. COMPTES RENDUS MATHEMATIQUE, 2002, 334 (02) : 113 - 118
  • [5] Global solutions of inhomogeneous Hamilton-Jacobi equations
    Philippe Souplet
    Qi S. Zhang
    [J]. Journal d’Analyse Mathématique, 2006, 99 : 355 - 396
  • [6] Global propagation of singularities for solutions of Hamilton-Jacobi equations
    Albano, Paolo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) : 1462 - 1478
  • [7] Classical global solutions for a class of Hamilton-Jacobi equations
    Cruz-Sampedro J.
    [J]. Qualitative Theory of Dynamical Systems, 2009, 8 (2) : 267 - 277
  • [8] On global solutions of the random Hamilton-Jacobi equations and the KPZ problem
    Bakhtin, Yuri
    Khanin, Konstantin
    [J]. NONLINEARITY, 2018, 31 (04) : R93 - R121
  • [9] On global solutions of the random hamilton-jacobi equations and the KPZ problem
    Bakhtin, Yuri
    Khanin, Konstantin
    [J]. arXiv, 2017,
  • [10] Local and global properties of solutions of quasilinear Hamilton-Jacobi equations
    Bidaut-Veron, Marie-Francoise
    Garcia-Huidobro, Marta
    Veron, Laurent
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (09) : 3294 - 3331