Zero entropy, non-integrable geodesic flows and a non-commutative rotation vector

被引:6
|
作者
Butler, LT [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
rotation vector; geodesic flows; entropy; nilmanifolds; nonintegrability;
D O I
10.1090/S0002-9947-03-03334-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a 2-step nilpotent Lie algebra; we say g is non-integrable if, for a generic pair of points p, p' is an element of g*, the isotropy algebras do not commute: [g(p), g(p)'] not equal 0. Theorem: If G is a simply-connected 2-step nilpotent Lie group, g = Lie(G) is non-integrable, D < G is a cocompact subgroup, and g is a left-invariant Riemannian metric, then the geodesic flow of g on T*(D\G) is neither Liouville nor non-commutatively integrable with C-0 first integrals. The proof uses a generalization of the rotation vector pioneered by Benardete and Mitchell.
引用
收藏
页码:3641 / 3650
页数:10
相关论文
共 50 条
  • [1] On non-commutative geodesic motion
    S. C. Ulhoa
    R. G. G. Amorim
    A. F. Santos
    General Relativity and Gravitation, 2014, 46
  • [2] On non-commutative geodesic motion
    Ulhoa, S. C.
    Amorim, R. G. G.
    Santos, A. F.
    GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (07) : 1 - 10
  • [3] Grassmannian flows and applications to non-commutative non-local and local integrable systems
    Doikou, Anastasia
    Malham, Simon J. A.
    Stylianidis, Ioannis
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 415
  • [4] ON NON-COMMUTATIVE INTEGRABLE BURGERS EQUATIONS
    Guerses, Metin
    Karasu, Atalay
    Turhan, Refik
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 (01) : 1 - 6
  • [5] On Non-Commutative Integrable Burgers Equations
    Metin Gürses
    Atalay Karasu
    Refik Turhan
    Journal of Nonlinear Mathematical Physics, 2010, 17 : 1 - 6
  • [6] Some classification of non-commutative Integrable Systems
    Daryoush Talati
    Abdul-Majid Wazwaz
    Nonlinear Dynamics, 2017, 88 : 1487 - 1492
  • [7] Some classification of non-commutative Integrable Systems
    Talati, Daryoush
    Wazwaz, Abdul-Majid
    NONLINEAR DYNAMICS, 2017, 88 (02) : 1487 - 1492
  • [8] Non-commutative Ricci and Calabi flows
    Zuevsky, A.
    ANNALES HENRI POINCARE, 2006, 7 (7-8): : 1569 - 1578
  • [9] Non-Commutative Ricci and Calabi Flows
    A. Zuevsky
    Annales Henri Poincaré, 2006, 7 : 1569 - 1578
  • [10] Geodesic equation in non-commutative gauge theory of gravity
    Touati, Abdellah
    Zaim, Slimane
    CHINESE PHYSICS C, 2022, 46 (10)