On non-commutative geodesic motion

被引:0
|
作者
S. C. Ulhoa
R. G. G. Amorim
A. F. Santos
机构
[1] Universidade de Brasília,Instituto de Física
[2] Universidade de Brasília,Faculdade Gama
[3] Universidade Federal de Mato Grosso,Instituto de Física
来源
General Relativity and Gravitation | 2014年 / 46卷
关键词
Non-commutative gravity; Schwarzschild space–time;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we study the geodesic motion on a noncommutative space–time. As a result we find a non-commutative geodesic equation and then we derive corrections of the deviation angle per revolution in terms of the non-commutative parameter when we specify the problem of Mercury’s perihelion. In this way, we estimate the noncommutative parameter based in experimental data.
引用
收藏
相关论文
共 50 条
  • [1] On non-commutative geodesic motion
    Ulhoa, S. C.
    Amorim, R. G. G.
    Santos, A. F.
    GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (07) : 1 - 10
  • [2] Geodesic equation in non-commutative gauge theory of gravity
    Touati, Abdellah
    Zaim, Slimane
    CHINESE PHYSICS C, 2022, 46 (10)
  • [3] Geodesic equation in non-commutative gauge theory of gravity
    Abdellah Touati
    Slimane Zaim
    Chinese Physics C, 2022, (10) : 197 - 210
  • [4] On the non-commutative multifractional Brownian motion
    Dozzi, Marco
    Schott, Rene
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2022, 25 (04)
  • [5] Quantized equations of motion in non-commutative theories
    Heslop, P
    Sibold, K
    EUROPEAN PHYSICAL JOURNAL C, 2005, 41 (04): : 545 - 556
  • [6] Quantized equations of motion in non-commutative theories
    P. Heslop
    K. Sibold
    The European Physical Journal C - Particles and Fields, 2005, 41 : 545 - 556
  • [7] Non-commutative automorphisms of bounded non-commutative domains
    McCarthy, John E.
    Timoney, Richard M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) : 1037 - 1045
  • [8] Testing non-commutative QED, constructing non-commutative MHD
    Guralnik, Z
    Jackiw, R
    Pi, SY
    Polychronakos, AP
    PHYSICS LETTERS B, 2001, 517 (3-4) : 450 - 456
  • [9] Zero entropy, non-integrable geodesic flows and a non-commutative rotation vector
    Butler, LT
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (09) : 3641 - 3650
  • [10] Integration with respect to the non-commutative fractional Brownian motion
    Deya, Aurelien
    Schott, Rene
    BERNOULLI, 2019, 25 (03) : 2137 - 2162