Zero entropy, non-integrable geodesic flows and a non-commutative rotation vector

被引:6
|
作者
Butler, LT [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
rotation vector; geodesic flows; entropy; nilmanifolds; nonintegrability;
D O I
10.1090/S0002-9947-03-03334-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a 2-step nilpotent Lie algebra; we say g is non-integrable if, for a generic pair of points p, p' is an element of g*, the isotropy algebras do not commute: [g(p), g(p)'] not equal 0. Theorem: If G is a simply-connected 2-step nilpotent Lie group, g = Lie(G) is non-integrable, D < G is a cocompact subgroup, and g is a left-invariant Riemannian metric, then the geodesic flow of g on T*(D\G) is neither Liouville nor non-commutatively integrable with C-0 first integrals. The proof uses a generalization of the rotation vector pioneered by Benardete and Mitchell.
引用
收藏
页码:3641 / 3650
页数:10
相关论文
共 50 条
  • [41] Non-commutative solitons
    Gopakumar, R
    Minwalla, S
    Strominger, A
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (05):
  • [42] Nonequilibrium phase transition in a non-integrable zero-range process
    Godreche, C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (29): : 9055 - 9069
  • [43] Non-commutative tachyons
    Dasgupta, K
    Rajesh, G
    Mukhi, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (06):
  • [44] NON-COMMUTATIVE PERSPECTIVES
    Effros, Edward
    Hansen, Frank
    ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (02): : 74 - 79
  • [45] Non-commutative Pfaffians
    Artamonov, D. V.
    Golubeva, V. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2012, 67 (01) : 175 - 177
  • [46] Quasi-Zero-Divisor Graphs of Non-Commutative Rings
    Shouxiang ZHAO
    Jizhu NAN
    Gaohua TANG
    JournalofMathematicalResearchwithApplications, 2017, 37 (02) : 137 - 147
  • [47] Interpolation between non-commutative BMO and non-commutative Lp-spaces
    Musat, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 202 (01) : 195 - 225
  • [48] Endomorphisms and automorphisms from subfactors illustrating non-commutative entropy
    Svendsen, AL
    MATHEMATICA SCANDINAVICA, 2005, 97 (02) : 266 - 280
  • [49] On non-commutative noetherian local rings, non-commutative geometry and particle physics
    Fahmy, MH
    Fahmy, S
    CHAOS SOLITONS & FRACTALS, 2002, 14 (09) : 1353 - 1359
  • [50] Witt vectors, commutative and non-commutative
    Kaledin, D. B.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (01) : 1 - 30