Zero entropy, non-integrable geodesic flows and a non-commutative rotation vector

被引:6
|
作者
Butler, LT [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
rotation vector; geodesic flows; entropy; nilmanifolds; nonintegrability;
D O I
10.1090/S0002-9947-03-03334-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a 2-step nilpotent Lie algebra; we say g is non-integrable if, for a generic pair of points p, p' is an element of g*, the isotropy algebras do not commute: [g(p), g(p)'] not equal 0. Theorem: If G is a simply-connected 2-step nilpotent Lie group, g = Lie(G) is non-integrable, D < G is a cocompact subgroup, and g is a left-invariant Riemannian metric, then the geodesic flow of g on T*(D\G) is neither Liouville nor non-commutatively integrable with C-0 first integrals. The proof uses a generalization of the rotation vector pioneered by Benardete and Mitchell.
引用
收藏
页码:3641 / 3650
页数:10
相关论文
共 50 条
  • [31] Non-integrable galactic dynamics
    Merritt, D
    RESTLESS UNIVERSE - APPLICATIONS OF GRAVITATIONAL N-BODY DYNAMICS TO PLANETARY, STELLAR AND GALACTIC SYSTEMS, 2001, 54 : 145 - 165
  • [32] Integrable variational equations of non-integrable systems
    Maciejewski, Andrzej J.
    Przybylska, Maria
    REGULAR & CHAOTIC DYNAMICS, 2012, 17 (3-4): : 337 - 358
  • [33] Global action-angle variables for non-commutative integrable systems
    Fernandes, Rui Loja
    Laurent-Gengoux, Camille
    Vanhaecke, Pol
    JOURNAL OF SYMPLECTIC GEOMETRY, 2018, 16 (03) : 645 - 699
  • [34] Integrable variational equations of non-integrable systems
    Andrzej J. Maciejewski
    Maria Przybylska
    Regular and Chaotic Dynamics, 2012, 17 : 337 - 358
  • [35] Non-commutative renormalization
    Rivasseau, Vincent
    QUANTUM SPACES: POINCARE SEMINAR 2007, 2007, 53 : 19 - 107
  • [36] Non-commutative fluids
    Polychronakos, Alexios P.
    QUANTUM SPACES: POINCARE SEMINAR 2007, 2007, 53 : 109 - 159
  • [37] On Non-commutative Spreadability
    Griseta, Maria Elena
    OPERATOR AND MATRIX THEORY, FUNCTION SPACES, AND APPLICATIONS, IWOTA 2022, 2024, 295 : 189 - 202
  • [38] Non-commutative amoebas
    Mikhalkin, Grigory
    Shkolnikov, Mikhail
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (02) : 335 - 368
  • [39] Non-commutative worlds
    Kauffman, LH
    NEW JOURNAL OF PHYSICS, 2004, 6 : 1 - 47
  • [40] A non-commutative Nullstellensatz
    Bao, Zhengheng
    Reichstein, Zinovy
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (04)