Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems

被引:21
|
作者
Mao, Yawen [1 ,2 ]
Ding, Feng [1 ,3 ]
Alsaedi, Ahmed [3 ]
Hayat, Tasawar [3 ,4 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[2] King Abdulaziz Univ, Fac Engn, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[4] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
基金
中国国家自然科学基金;
关键词
Parameter estimation; Recursive identification; Nonlinear system; Adaptive filtering; Multi-innovation identification theory; STOCHASTIC GRADIENT ALGORITHM; IDENTIFICATION ALGORITHM; RECURSIVE-IDENTIFICATION; STRATEGY;
D O I
10.1016/j.sigpro.2016.05.009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the parameter estimation problems of the Hammerstein nonlinear systems using the adaptive filtering technique. A linear filter based recursive least squares (LF-RLS) identification algorithm with good convergence properties and high parameter estimation accuracy is proposed by filtering the input-output data. A linear filter based multi-innovation stochastic gradient (LF-MISG) algorithm is proposed by the innovation expansion, in order to improve the computational efficiency of the LF-RLS algorithm. Furthermore, a time-varying factor is introduced in the linear filter to improve the convergence speed of the LF-MISG algorithm. The efficiency of the proposed algorithms are shown in comparison with the conventional identification algorithms. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:417 / 425
页数:9
相关论文
共 50 条
  • [41] Parameter estimation algorithms for Hammerstein time-delay systems based on the orthogonal matching pursuit scheme
    Mao, Yawen
    Ding, Feng
    Liu, Yanjun
    IET SIGNAL PROCESSING, 2017, 11 (03) : 265 - 274
  • [42] Nonlinear Filtering with Adaptive Estimation of State Transfer Matrix for Nonlinear Systems with Multiplicative Noise
    Meng, Jianwen
    Ge, Quanbo
    Wang, Rui
    Niu, Zhuyun
    2017 32ND YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2017, : 228 - 233
  • [43] INVARIANT IMBEDDING NONLINEAR FILTERING AND PARAMETER ESTIMATION
    LEE, ES
    INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1968, 7 (01): : 164 - &
  • [44] Modelling and multi-innovation parameter identification for Hammerstein nonlinear state space systems using the filtering technique
    Wang, Xuehai
    Ding, Feng
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2016, 22 (02) : 113 - 140
  • [45] Adaptive control of Hammerstein-Wiener nonlinear systems
    Zhang, Bi
    Hong, Hyokchan
    Mao, Zhizhong
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (09) : 2032 - 2047
  • [46] Extensive Representations and Algorithms for Nonlinear Filtering and Estimation
    Stump, Ethan
    Grocholsky, Ben
    Kumar, Vijay
    ALGORITHMIC FOUNDATION OF ROBOTICS VII, 2008, 47 : 169 - +
  • [47] ADAPTIVE FEEDFORWARD CONTROL OF HAMMERSTEIN NONLINEAR-SYSTEMS
    BHAT, J
    CHIDAMBARAM, M
    MADHAVAN, KP
    INTERNATIONAL JOURNAL OF CONTROL, 1990, 51 (01) : 237 - 242
  • [48] Nonlinear Parameter Estimation via Estimation of Distribution Algorithms
    Li, Jun
    Jiang, Yong
    PROCEEDINGS OF 2008 INTERNATIONAL PRE-OLYMPIC CONGRESS ON COMPUTER SCIENCE, VOL II: INFORMATION SCIENCE AND ENGINEERING, 2008, : 213 - 217
  • [49] The Filtering Based Maximum Likelihood Recursive Least Squares Parameter Estimation Algorithms for a Class of Nonlinear Stochastic Systems with Colored Noise
    Wang, Longjin
    An, Shun
    He, Yan
    Yuan, Jianping
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (01) : 151 - 160
  • [50] The Filtering Based Maximum Likelihood Recursive Least Squares Parameter Estimation Algorithms for a Class of Nonlinear Stochastic Systems with Colored Noise
    Longjin Wang
    Shun An
    Yan He
    Jianping Yuan
    International Journal of Control, Automation and Systems, 2023, 21 : 151 - 160