Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems

被引:21
|
作者
Mao, Yawen [1 ,2 ]
Ding, Feng [1 ,3 ]
Alsaedi, Ahmed [3 ]
Hayat, Tasawar [3 ,4 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[2] King Abdulaziz Univ, Fac Engn, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[4] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
基金
中国国家自然科学基金;
关键词
Parameter estimation; Recursive identification; Nonlinear system; Adaptive filtering; Multi-innovation identification theory; STOCHASTIC GRADIENT ALGORITHM; IDENTIFICATION ALGORITHM; RECURSIVE-IDENTIFICATION; STRATEGY;
D O I
10.1016/j.sigpro.2016.05.009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the parameter estimation problems of the Hammerstein nonlinear systems using the adaptive filtering technique. A linear filter based recursive least squares (LF-RLS) identification algorithm with good convergence properties and high parameter estimation accuracy is proposed by filtering the input-output data. A linear filter based multi-innovation stochastic gradient (LF-MISG) algorithm is proposed by the innovation expansion, in order to improve the computational efficiency of the LF-RLS algorithm. Furthermore, a time-varying factor is introduced in the linear filter to improve the convergence speed of the LF-MISG algorithm. The efficiency of the proposed algorithms are shown in comparison with the conventional identification algorithms. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:417 / 425
页数:9
相关论文
共 50 条
  • [21] Estimation of Hammerstein nonlinear systems with noises using filtering and recursive approaches for industrial control
    Zhang, Mingguang
    Li, Feng
    Yu, Yang
    Cao, Qingfeng
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2024, 25 (02) : 260 - 271
  • [22] PARAMETER ESTIMATION OF DISCRETE SYSTEMS OF HAMMERSTEIN CLASS
    KAMINSKAS, VA
    AUTOMATION AND REMOTE CONTROL, 1975, 36 (07) : 1107 - 1113
  • [23] Novel particle filtering algorithms for fixed parameter estimation in dynamic systems
    Míguez, J
    Bugallo, MF
    Djuric, PM
    ISPA 2005: PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, 2005, : 46 - 51
  • [24] Design of momentum LMS adaptive strategy for parameter estimation of Hammerstein controlled autoregressive systems
    Naveed Ishtiaq Chaudhary
    Syed Zubair
    Muhammad Asif Zahoor Raja
    Neural Computing and Applications, 2018, 30 : 1133 - 1143
  • [25] Integrated Modeling and Adaptive Parameter Estimation for Hammerstein Systems With Asymmetric Dead-Zone
    He, Haoran
    Na, Jing
    Huang, Yingbo
    Liu, Tao
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (05) : 4942 - 4951
  • [26] Design of momentum LMS adaptive strategy for parameter estimation of Hammerstein controlled autoregressive systems
    Chaudhary, Naveed Ishtiaq
    Zubair, Syed
    Raja, Muhammad Asif Zahoor
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (04): : 1133 - 1143
  • [27] Nonlinear adaptive parameter estimation algorithms for hysteresis models of magnetostrictive actuators
    Nealis, JM
    Smith, RC
    SMART STRUCTURES AND MATERIALS 2002: MODELING, SIGNAL PROCESSING, AND CONTROL, 2002, 4693 : 25 - 36
  • [28] A Robust Adaptive Controller for Hammerstein Nonlinear Systems
    Yuan, Ping
    Zhang, Bi
    Mao, Zhi-Zhong
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (02) : 656 - 667
  • [29] Alternative Nonlinear Filtering Techniques in Geodesy for Dual State and Adaptive Parameter Estimation
    Alkhatib, H.
    1ST INTERNATIONAL WORKSHOP ON THE QUALITY OF GEODETIC OBSERVATION AND MONITORING SYSTEMS (QUGOMS'11), 2015, 140 : 107 - 113
  • [30] A robust adaptive controller for Hammerstein nonlinear systems
    Ping Yuan
    Bi Zhang
    Zhi-Zhong Mao
    International Journal of Control, Automation and Systems, 2017, 15 : 656 - 667