FRACTIONAL ASPECTS OF THE ERDOS-FABER-LOVASZ CONJECTURE

被引:0
|
作者
Bosica, John [1 ]
Tardif, Claude [1 ]
机构
[1] Royal Mil Coll Canada, Dept Math & Comp Sci, Kingston, ON K7K 7B4, Canada
关键词
Erdos-Faber-Lovasz Conjecture; fractional chromatic number;
D O I
10.7151/dmgt.1781
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Erdos-Faber-Lovasz conjecture is the statement that every graph that is the union of n cliques of size n intersecting pairwise in at most one vertex has chromatic number n. Kahn and Seymour proved a fractional version of this conjecture, where the chromatic number is replaced by the fractional chromatic number. In this note we investigate similar fractional relaxations of the Erdos-Faber-Lovasz conjecture, involving variations of the fractional chromatic number. We exhibit some relaxations that can be proved in the spirit of the Kahn-Seymour result, and others that are equivalent to the original conjecture.
引用
收藏
页码:197 / 202
页数:6
相关论文
共 50 条
  • [21] ON A CONJECTURE OF ERDOS, FABER, AND LOVASZ ABOUT N-COLORINGS
    HINDMAN, N
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (03): : 563 - 570
  • [22] Hypercubes defined on n-ary sets, the Erdos-Faber-Lovasz conjecture on graph coloring, and the description spaces of polypeptides and RNA
    Carbo-Dorca, Ramon
    Chakraborty, Tanmoy
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 57 (10) : 2182 - 2194
  • [23] A proof of the Erd.os-Faber-Lovasz conjecture: Algorithmic aspects
    Kang, Dong Yeap
    Kelly, Tom
    Kuhn, Daniela
    Methuku, Abhishek
    Osthus, Deryk
    [J]. 2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 1080 - 1089
  • [24] A note on the Erdos-Farber-Lovasz conjecture
    Jackson, Bill
    Sethuraman, G.
    Whitehead, Carol
    [J]. DISCRETE MATHEMATICS, 2007, 307 (7-8) : 911 - 915
  • [25] The Erdos-Lovasz Tihany Conjecture and complete minors
    Kawarabayashi, Ken-Ichi
    Pedersen, Anders Sune
    Toft, Bjarne
    [J]. JOURNAL OF COMBINATORICS, 2011, 2 (04) : 575 - 592
  • [26] Further results on Erds-Faber-Lovasz conjecture
    Hegde, S. M.
    Dara, Suresh
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 614 - 631
  • [27] Erdos-Lovasz Tihany Conjecture for graphs with forbidden holes
    Song, Zi-Xia
    [J]. DISCRETE MATHEMATICS, 2019, 342 (09) : 2632 - 2635
  • [28] Enhancing the Erdos-Lovasz Tihany Conjecture for line graphs of multigraphs
    Wang, Yue
    Yu, Gexin
    [J]. JOURNAL OF GRAPH THEORY, 2022, 101 (01) : 134 - 141
  • [29] The Erdos-Lovasz Tihany conjecture for quasi-line graphs
    Balogh, Jozsef
    Kostochka, Alexandr V.
    Prince, Noah
    Stiebitz, Michael
    [J]. DISCRETE MATHEMATICS, 2009, 309 (12) : 3985 - 3991
  • [30] Proof of the Lovasz conjecture
    Babson, Eric
    Kozlov, Dmitry N.
    [J]. ANNALS OF MATHEMATICS, 2007, 165 (03) : 965 - 1007