The Erdos-Lovasz Tihany Conjecture and complete minors

被引:1
|
作者
Kawarabayashi, Ken-Ichi [1 ]
Pedersen, Anders Sune [2 ]
Toft, Bjarne [2 ]
机构
[1] Natl Inst Informat, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan
[2] Univ Southern Denmark, Dept Math & Comp Sci, DK-5230 Odense M, Denmark
关键词
Graph colouring; graph decompositions; complete minors;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Erdos-Lovasz Tihany Conjecture [Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, 1968] states that for any pair of integers s, t >= 2 and for any graph G with chromatic number equal to s + t -1 and clique number less than s + t -1 there are two disjoint subgraphs of G with chromatic number s and t, respectively. The Erdos-Lovasz Tihany Conjecture is still open except for a few small values of s and t. Given the same hypothesis as in the Erdos-Lovasz Tihany Conjecture, we study the problem of finding two disjoint subgraphs of G with complete minors of order s and t, respectively. If Hadwiger's Conjecture holds, then this latter problem might be easier to settle than the Erdos-Lovasz Tihany Conjecture. In this paper we settle this latter problem for a few small additional values of s and t.
引用
收藏
页码:575 / 592
页数:18
相关论文
共 50 条
  • [1] Erdos-Lovasz Tihany Conjecture for graphs with forbidden holes
    Song, Zi-Xia
    [J]. DISCRETE MATHEMATICS, 2019, 342 (09) : 2632 - 2635
  • [2] The Erdos-Lovasz Tihany conjecture for quasi-line graphs
    Balogh, Jozsef
    Kostochka, Alexandr V.
    Prince, Noah
    Stiebitz, Michael
    [J]. DISCRETE MATHEMATICS, 2009, 309 (12) : 3985 - 3991
  • [3] Enhancing the Erdos-Lovasz Tihany Conjecture for line graphs of multigraphs
    Wang, Yue
    Yu, Gexin
    [J]. JOURNAL OF GRAPH THEORY, 2022, 101 (01) : 134 - 141
  • [4] A note on the Erdos-Faber-Lovasz Conjecture: quasigroups and complete digraphs
    Araujo-Pardo, G.
    Rubio-Montiel, C.
    Vazquez-Avila, A.
    [J]. ARS COMBINATORIA, 2019, 143 : 53 - 57
  • [5] A remark on the conjecture of Erdos, Faber and Lovasz
    Klein, Hauke
    Margraf, Marian
    [J]. JOURNAL OF GEOMETRY, 2008, 88 (1-2) : 116 - 119
  • [6] On the Erdos-Faber-Lovasz Conjecture
    Mitchem, John
    Schmidt, Randolph L.
    [J]. ARS COMBINATORIA, 2010, 97 : 497 - 505
  • [7] A Relaxed Version of the Erds-Lovasz Tihany Conjecture
    Stiebitz, Michael
    [J]. JOURNAL OF GRAPH THEORY, 2017, 85 (01) : 278 - 287
  • [8] Around Erdos-Lovasz problem on colorings of non-uniform hypergraphs
    Shabanov, Dmitry A.
    [J]. DISCRETE MATHEMATICS, 2015, 338 (11) : 1976 - 1981
  • [9] A note on Erdos-Faber-Lovasz Conjecture and edge coloring of complete graphs
    Araujo-Pardo, G.
    Vazquez-Avila, A.
    [J]. ARS COMBINATORIA, 2016, 129 : 287 - 298
  • [10] A VARIANT OF THE ERDOS-FABER-LOVASZ CONJECTURE
    KASTANAS, I
    VANDENEYNDEN, C
    HOLZSAGER, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (07): : 692 - 693