Around Erdos-Lovasz problem on colorings of non-uniform hypergraphs

被引:3
|
作者
Shabanov, Dmitry A. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Dept Probabil Theory, Moscow 119991, Russia
[2] Natl Res Univ, HSE, Fac Comp Sci, Moscow 101000, Russia
关键词
Colorings of hypergraphs; Erdos-Lovasz problem; Non-uniform hypergraphs; Probabilistic methods;
D O I
10.1016/j.disc.2015.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The work deals with combinatorial problems concerning colorings of non-uniform hypergraphs. Let H = (V, E) be a hypergraph with minimum edge-cardinality n. We show that if H is a simple hypergraph (i.e. every two distinct edges have at most one common vertex) and (e is an element of E)Sigma r(1-vertical bar e vertical bar) <= c root n, for some absolute constant c > 0, then H is r-colorable. We also obtain a stronger result for triangle-free simple hypergraphs by proving that if H is a simple triangle-free hypergraph and (e is an element of E)Sigma r(1-vertical bar e vertical bar) <= c . n, for some absolute constant c > 0, then H is r-colorable. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1976 / 1981
页数:6
相关论文
共 50 条
  • [1] Intersecting and 2-intersecting hypergraphs with maximal covering number: The Erdos-Lovasz theme revisited
    Barat, Janos
    JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (03) : 193 - 209
  • [2] Non-Uniform Hypergraphs
    Shirdel, G. H.
    Mortezaee, A.
    Golpar-Raboky, E.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 11 (03): : 161 - 177
  • [3] Coloring non-uniform hypergraphs: A new algorithmic approach to the general Lovasz Local Lemma
    Czumaj, A
    Scheideler, C
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 30 - 39
  • [4] Covering non-uniform hypergraphs
    Boros, E
    Caro, Y
    Füredi, Z
    Yuster, R
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 82 (02) : 270 - 284
  • [5] Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs
    Guo, Jin-Li
    Zhu, Xin-Yun
    Suo, Qi
    Forrest, Jeffrey
    SCIENTIFIC REPORTS, 2016, 6
  • [6] Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs
    Jin-Li Guo
    Xin-Yun Zhu
    Qi Suo
    Jeffrey Forrest
    Scientific Reports, 6
  • [7] On the Erdos-Hajnal problem for 3-uniform hypergraphs
    Akol'zin, I. A.
    MATHEMATICAL NOTES, 2013, 94 (5-6) : 951 - 953
  • [8] Berge cycles in non-uniform hypergraphs
    Furedi, Zoltan
    Kostochka, Alexandr
    Luo, Ruth
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 13
  • [9] Subgraphs in Non-uniform Random Hypergraphs
    Dewar, Megan
    Healy, John
    Perez-Gimenez, Xavier
    Pralat, Pawel
    Proos, John
    Reiniger, Benjamin
    Ternovsky, Kirill
    ALGORITHMS AND MODELS FOR THE WEB GRAPH, WAW 2016, 2016, 10088 : 140 - 151
  • [10] Turan problems on Non-uniform Hypergraphs
    Johnston, J. Travis
    Lu, Linyuan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):