ON A CONJECTURE OF ERDOS, FABER, AND LOVASZ ABOUT N-COLORINGS

被引:19
|
作者
HINDMAN, N
机构
关键词
D O I
10.4153/CJM-1981-046-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:563 / 570
页数:8
相关论文
共 50 条
  • [1] A remark on the conjecture of Erdos, Faber and Lovasz
    Klein, Hauke
    Margraf, Marian
    [J]. JOURNAL OF GEOMETRY, 2008, 88 (1-2) : 116 - 119
  • [2] On the Erdos-Faber-Lovasz Conjecture
    Mitchem, John
    Schmidt, Randolph L.
    [J]. ARS COMBINATORIA, 2010, 97 : 497 - 505
  • [3] The Erdos-Faber-Lovasz conjecture is true for n <= 12
    Romero, David
    Alonso-Pecina, Federico
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (03)
  • [4] The Erdos-Faber-Lovasz Conjecture revisited
    Gauci, John Baptist
    Zerafa, Jean Paul
    [J]. NOTE DI MATEMATICA, 2021, 41 (02): : 1 - 7
  • [5] A VARIANT OF THE ERDOS-FABER-LOVASZ CONJECTURE
    KASTANAS, I
    VANDENEYNDEN, C
    HOLZSAGER, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (07): : 692 - 693
  • [6] FRACTIONAL ASPECTS OF THE ERDOS-FABER-LOVASZ CONJECTURE
    Bosica, John
    Tardif, Claude
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (01) : 197 - 202
  • [7] A FRACTIONAL VERSION OF THE ERDOS-FABER-LOVASZ CONJECTURE
    KAHN, J
    SEYMOUR, PD
    [J]. COMBINATORICA, 1992, 12 (02) : 155 - 160
  • [8] Adding evidence to the Erdos-Faber-Lovasz conjecture
    Romero, David
    Sanchez-Arroyo, Abdon
    [J]. ARS COMBINATORIA, 2007, 85 : 71 - 84
  • [9] EDGE COLORING OF HYPERGRAPHS AND A CONJECTURE OF ERDOS, FABER, LOVASZ
    CHANG, WI
    LAWLER, EL
    [J]. COMBINATORICA, 1988, 8 (03) : 293 - 295
  • [10] Some Results on the Erdos-Faber-Lovasz Conjecture
    Feng, Yun
    Lin, Wensong
    [J]. SYMMETRY-BASEL, 2022, 14 (07):