Approximation properties of Julia polynomials

被引:1
|
作者
Israfilov, Daniyal M. [1 ]
Oktay, Burcin [1 ]
机构
[1] Balikesir Univ, Fac Art & Sci, Dept Math, TR-10100 Balikesir, Turkey
关键词
conformal mapping; extremal polynomials; bounded boundary rotation; Dini-smooth boundary; BIEBERBACH POLYNOMIALS; CONVERGENCE; DOMAINS;
D O I
10.1007/s10114-005-0730-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite simply connected domain in the complex plane C, bounded by a rectifiable Jordan curve L, and let w = phi(0) (z) be the Riemann conformal mapping of G onto D(0, r (0)) := {w : vertical bar w vertical bar < r (0)}, normalized by the conditions phi(0) (z(0)) = 0, phi'(0) (z(0)) = 1. In this work, the rate of approximation of phi o (0) by the polynomials, defined with the help of the solutions of some extremal problem, in a closed domain (G) over bar is studied. This rate depends on the geometric properties of the boundary L.
引用
收藏
页码:1303 / 1310
页数:8
相关论文
共 50 条
  • [31] FEKETE POLYNOMIALS AND SHAPES OF JULIA SETS
    Lindsey, Kathryn A.
    Younsi, Malik
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (12) : 8489 - 8511
  • [32] Filled Julia Sets of Chebyshev Polynomials
    Christiansen, Jacob Stordal
    Henriksen, Christian
    Pedersen, Henrik Laurberg
    Petersen, Carsten Lunde
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 12250 - 12263
  • [33] The Julia sets of quadratic Cremer polynomials
    Blokh, Alexander
    Oversteegen, Lex
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (15) : 3038 - 3050
  • [34] INDECOMPOSABLE CONTINUA AND THE JULIA SETS OF POLYNOMIALS
    MAYER, JC
    ROGERS, JT
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (03) : 795 - 802
  • [35] Dynamics of polynomials with disconnected Julia sets
    Emerson, ND
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (04) : 801 - 834
  • [36] Chebyshev Polynomials on Generalized Julia Sets
    Gökalp Alpan
    Computational Methods and Function Theory, 2016, 16 : 387 - 393
  • [37] Filled Julia Sets of Chebyshev Polynomials
    Jacob Stordal Christiansen
    Christian Henriksen
    Henrik Laurberg Pedersen
    Carsten Lunde Petersen
    The Journal of Geometric Analysis, 2021, 31 : 12250 - 12263
  • [38] Orthogonal Polynomials on Generalized Julia Sets
    Gökalp Alpan
    Alexander Goncharov
    Complex Analysis and Operator Theory, 2017, 11 : 1845 - 1864
  • [39] JULIA SETS OF POLYNOMIALS ARE UNIFORMLY PERFECT
    HINKKANEN, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 153 - 159
  • [40] Chebyshev Polynomials on Generalized Julia Sets
    Alpan, Gokalp
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2016, 16 (03) : 387 - 393