Pancreatic Neuroendocrine Tumors in Glucagon Receptor-Deficient Mice

被引:18
|
作者
Yu, Run [1 ,2 ]
Dhall, Deepti [3 ]
Nissen, Nicholas N. [4 ,5 ]
Zhou, Cuiqi [6 ]
Ren, Song-Guang [6 ]
机构
[1] Univ Calif Los Angeles, Cedars Sinai Med Ctr, David Geffen Sch Med, Div Endocrinol, Los Angeles, CA 90048 USA
[2] Univ Calif Los Angeles, Cedars Sinai Med Ctr, David Geffen Sch Med, Carcinoid & Neuroendocrine Tumor Ctr, Los Angeles, CA 90048 USA
[3] Cedars Sinai Med Ctr, Dept Pathol, Los Angeles, CA 90048 USA
[4] Univ Calif Los Angeles, Cedars Sinai Med Ctr, Dept Surg, Los Angeles, CA 90048 USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
[6] Cedars Sinai Med Ctr, Div Endocrinol Diabet & Metab, Los Angeles, CA 90048 USA
来源
PLOS ONE | 2011年 / 6卷 / 08期
基金
美国国家卫生研究院;
关键词
MULTIPLE ENDOCRINE NEOPLASIA; ALPHA-CELL HYPERPLASIA; KNOCKOUT MICE; GLUCOSE-HOMEOSTASIS; PRECURSOR LESIONS; GLYCEMIC CONTROL; TRANSGENIC MICE; T-ANTIGEN; MEN1; GENE;
D O I
10.1371/journal.pone.0023397
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inhibition of glucagon signaling causes hyperglucagonemia and pancreatic alpha cell hyperplasia in mice. We have recently demonstrated that a patient with an inactivating glucagon receptor mutation (P86S) also exhibits hyperglucagonemia and pancreatic alpha cell hyperplasia but further develops pancreatic neuroendocrine tumors (PNETs). To test the hypothesis that defective glucagon signaling causes PNETs, we studied the pancreata of mice deficient in glucagon receptor (Gcgr(-/-)) from 2 to 12 months, using WT and heterozygous mice as controls. At 2-3 months, Gcgr(-/-) mice exhibited normal islet morphology but the islets were mostly composed of alpha cells. At 5-7 months, dysplastic islets were evident in Gcgr(-/-) mice but absent in WT or heterozygous controls. At 10-12 months, gross PNETs (>= 1 mm) were detected in most Gcgr(-/-) pancreata and micro-PNETs (<1 mm) were found in all (n = 14), whereas the islet morphology remained normal and no PNETs were found in any WT (n = 10) or heterozygous (n = 25) pancreata. Most PNETs in Gcgr(-/-) mice were glucagonomas, but some were non-functioning. No tumors predominantly expressed insulin, pancreatic polypeptide, or somatostatin, although some harbored focal aggregates of tumor cells expressing one of those hormones. The PNETs in Gcgr(-/-) mice were well differentiated and occasionally metastasized to the liver. Menin expression was aberrant in most dysplatic islets and PNETs. Vascular endothelial growth factor (VEGF) was overexpressed in PNET cells and its receptor Flk-1 was found in the abundant blood vessels or blood islands inside the tumors. We conclude that defective glucagon signaling causes PNETs in the Gcgr(-/-) mice, which may be used as a model of human PNETs. Our results further suggest that completely inhibiting glucagon signaling may not be a safe approach to treat diabetes.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Reproductive function of prostanoids: Lessons from receptor-deficient mice
    Sugimoto, Y
    Tsuboi, K
    Narumiya, S
    Ichikawa, A
    NIPPON NOGEIKAGAKU KAISHI-JOURNAL OF THE JAPAN SOCIETY FOR BIOSCIENCE BIOTECHNOLOGY AND AGROCHEMISTRY, 2002, 76 (11): : 1082 - 1085
  • [42] Castration accelerates atherosclerosis in male LDL receptor-deficient mice
    Orlinska, U
    Banka, CL
    CIRCULATION, 2000, 102 (18) : 319 - 319
  • [43] Gubernacular development in Mullerian inhibiting substance receptor-deficient mice
    Bartlett, JE
    Lee, SMY
    Mishina, Y
    Behringer, RR
    Yang, N
    Wolf, J
    Temelcos, C
    Hutson, JM
    BJU INTERNATIONAL, 2002, 89 (01) : 113 - 118
  • [44] Rewarding effects of ethanol and cocaine in μ opioid receptor-deficient mice
    Becker, A
    Grecksch, G
    Kraus, J
    Loh, HH
    Schroeder, H
    Höllt, V
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2002, 365 (04) : 296 - 302
  • [45] A Trif deficiency is atheroprotective in hyperlipidemic LDL receptor-deficient mice
    Richards, M. Rachel
    Black, Audrey S.
    Bulgrien, Joshua
    Bonnet, David J.
    Yamauchi, Kazuyoshi
    Hoebe, Kasper
    Curtiss, Linda K.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2008, 28 (06) : E40 - E40
  • [46] Sleep architecture of adenosine A2A receptor-deficient mice
    Tsai, Chia-Jung
    Liu, Chih-Yao
    Lazarus, Michael
    Hayashi, Yu
    SLEEP AND BIOLOGICAL RHYTHMS, 2020, 18 (03) : 275 - 279
  • [47] Oxytocin receptor-deficient mice showed dysfunction of the thermoregulatory ability
    Sato, Keisuke
    Kasahara, Yoshiyuki
    Mizukami, Hiroaki
    Nishimori, Katsuhiko
    NEUROSCIENCE RESEARCH, 2011, 71 : E163 - E163
  • [48] Differential mitogenic signaling in insulin receptor-deficient fetal pancreatic β-cells
    Guillen, C
    Navarro, P
    Robledo, M
    Valverde, AM
    Benito, M
    ENDOCRINOLOGY, 2006, 147 (04) : 1959 - 1968
  • [49] Fibroblast Growth Factor 21 (FGF21) and Glucagon-Like Peptide 1 Contribute to Diabetes Resistance in Glucagon Receptor-Deficient Mice
    Omar, Bilal A.
    Andersen, Birgitte
    Hald, Jacob
    Raun, Kirsten
    Nishimura, Erica
    Ahren, Bo
    DIABETES, 2014, 63 (01) : 101 - 110
  • [50] Enhanced δ-opioid receptor-mediated antinociception in μ-opioid receptor-deficient mice
    Qiu, CY
    Sora, I
    Ren, K
    Uhl, G
    Dubner, R
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2000, 387 (02) : 163 - 169