Pancreatic Neuroendocrine Tumors in Glucagon Receptor-Deficient Mice

被引:20
|
作者
Yu, Run [1 ,2 ]
Dhall, Deepti [3 ]
Nissen, Nicholas N. [4 ,5 ]
Zhou, Cuiqi [6 ]
Ren, Song-Guang [6 ]
机构
[1] Univ Calif Los Angeles, Cedars Sinai Med Ctr, David Geffen Sch Med, Div Endocrinol, Los Angeles, CA 90048 USA
[2] Univ Calif Los Angeles, Cedars Sinai Med Ctr, David Geffen Sch Med, Carcinoid & Neuroendocrine Tumor Ctr, Los Angeles, CA 90048 USA
[3] Cedars Sinai Med Ctr, Dept Pathol, Los Angeles, CA 90048 USA
[4] Univ Calif Los Angeles, Cedars Sinai Med Ctr, Dept Surg, Los Angeles, CA 90048 USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
[6] Cedars Sinai Med Ctr, Div Endocrinol Diabet & Metab, Los Angeles, CA 90048 USA
来源
PLOS ONE | 2011年 / 6卷 / 08期
基金
美国国家卫生研究院;
关键词
MULTIPLE ENDOCRINE NEOPLASIA; ALPHA-CELL HYPERPLASIA; KNOCKOUT MICE; GLUCOSE-HOMEOSTASIS; PRECURSOR LESIONS; GLYCEMIC CONTROL; TRANSGENIC MICE; T-ANTIGEN; MEN1; GENE;
D O I
10.1371/journal.pone.0023397
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inhibition of glucagon signaling causes hyperglucagonemia and pancreatic alpha cell hyperplasia in mice. We have recently demonstrated that a patient with an inactivating glucagon receptor mutation (P86S) also exhibits hyperglucagonemia and pancreatic alpha cell hyperplasia but further develops pancreatic neuroendocrine tumors (PNETs). To test the hypothesis that defective glucagon signaling causes PNETs, we studied the pancreata of mice deficient in glucagon receptor (Gcgr(-/-)) from 2 to 12 months, using WT and heterozygous mice as controls. At 2-3 months, Gcgr(-/-) mice exhibited normal islet morphology but the islets were mostly composed of alpha cells. At 5-7 months, dysplastic islets were evident in Gcgr(-/-) mice but absent in WT or heterozygous controls. At 10-12 months, gross PNETs (>= 1 mm) were detected in most Gcgr(-/-) pancreata and micro-PNETs (<1 mm) were found in all (n = 14), whereas the islet morphology remained normal and no PNETs were found in any WT (n = 10) or heterozygous (n = 25) pancreata. Most PNETs in Gcgr(-/-) mice were glucagonomas, but some were non-functioning. No tumors predominantly expressed insulin, pancreatic polypeptide, or somatostatin, although some harbored focal aggregates of tumor cells expressing one of those hormones. The PNETs in Gcgr(-/-) mice were well differentiated and occasionally metastasized to the liver. Menin expression was aberrant in most dysplatic islets and PNETs. Vascular endothelial growth factor (VEGF) was overexpressed in PNET cells and its receptor Flk-1 was found in the abundant blood vessels or blood islands inside the tumors. We conclude that defective glucagon signaling causes PNETs in the Gcgr(-/-) mice, which may be used as a model of human PNETs. Our results further suggest that completely inhibiting glucagon signaling may not be a safe approach to treat diabetes.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Upregulation of Somatostatin Receptor Type 2 Improves 177Lu-DOTATATE Therapy in Receptor-Deficient Pancreatic Neuroendocrine Tumor Model
    Sharma, Rupali
    Earla, Bhargav
    Baidoo, Kwamena E.
    Zeiger, Martha A.
    Madigan, James P.
    Escorcia, Freddy E.
    Sadowski, Samira M.
    MOLECULAR CANCER THERAPEUTICS, 2023, 22 (09) : 1052 - 1062
  • [22] Effects of probucol on atherosclerosis of apoE-deficient or LDL receptor-deficient mice
    Yoshikawa, T
    Shimano, H
    Chen, Z
    Ishibashi, S
    Yamada, N
    HORMONE AND METABOLIC RESEARCH, 2001, 33 (08) : 472 - 479
  • [23] Impaired glucose tolerance and abnormal pancreatic islet structure in type 1 sulfonylurea receptor-deficient mice
    Shiota, C
    Shelton, KD
    Fujimoto, Y
    Berggren, PO
    Magnuson, MA
    DIABETES, 2000, 49 : A82 - A82
  • [24] Interferon α/β Receptor-Deficient Mice as a Model for Ebola Virus Disease
    Brannan, Jennifer M.
    Froude, Jeffery W.
    Prugar, Laura I.
    Bakken, Russell R.
    Zak, Samantha E.
    Daye, Sharon P.
    Wilhelmsen, Catherine E.
    Dye, John M.
    JOURNAL OF INFECTIOUS DISEASES, 2015, 212 : S282 - S294
  • [25] Behavioral Profile of CCK2 Receptor-deficient Mice
    Valérie Daugé
    Angélique Sebret
    Françoise Beslot
    Toshimitsu Matsui
    Bernard P Roques
    Neuropsychopharmacology, 2001, 25 : 690 - 698
  • [26] Morphine self-administration in μ-opioid receptor-deficient mice
    Becker, A
    Grecksch, G
    Brödemann, R
    Kraus, J
    Peters, B
    Schroeder, H
    Thiemann, V
    Loh, HH
    Höllt, V
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2000, 361 (06) : 584 - 589
  • [27] Sleep architecture of adenosine A2A receptor-deficient mice
    Chia-Jung Tsai
    Chih-Yao Liu
    Michael Lazarus
    Yu Hayashi
    Sleep and Biological Rhythms, 2020, 18 : 275 - 279
  • [28] Suppression of autoimmune neuritis in IFN-γ receptor-deficient mice
    Zhu, Y
    Ljunggren, HG
    Mix, E
    Li, HL
    van der Meide, P
    Elhassan, AM
    Winblad, B
    Zhu, J
    EXPERIMENTAL NEUROLOGY, 2001, 169 (02) : 472 - 478
  • [29] Accumulation of foam cells in liver X receptor-deficient mice
    Schuster, GU
    Parini, P
    Wang, L
    Alberti, S
    Steffensen, KR
    Hansson, GK
    Angelin, B
    Gustafsson, JÅ
    CIRCULATION, 2002, 106 (09) : 1147 - 1153
  • [30] Autoimmune thyroiditis in Fcγ receptor-deficient nonobese diabetic mice
    Ozaki, Hiroshi
    Mori, Kouki
    Nakagawa, Yoshinori
    Hoshikawa, Saeko
    Ito, Sadayoshi
    Inoue, Yoshihiro
    Takai, Toshiyuki
    Yoshida, Katsumi
    CLINICAL IMMUNOLOGY, 2009, 132 (02) : 291 - 293